Skip to main content

Power Take-Off Systems

  • Chapter
Ocean Wave Energy

Abstract

In this chapter the main mechanisms that can be implemented to convert wave into mechanical and/or electrical energy are discussed. Such mechanisms are often called power take-off (PTO) or power conversion systems (the first is adopted throughout the book). The review is directly linked with the most commonly used options and to those which are linked with the technologies described in Chapter 7. Firstly air turbines, used in Oscillating Water Columns, are focused (6.1), while in 6.2 the principles of linear generators (direct drive) are addressed. Section 6.3 is devoted to hydraulic power take-off systems and details regarding an alternative to electricity production (desalination) are given in 6.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References (6.1)

  • Abbott IH, Von Doenhoff AE (1959) Theory of Wing Sections, 2nd edn. Dover Publications

    Google Scholar 

  • Alcorn RG, Beattie WC, Douglas R (1998) Transient performance modelling of a Wells turbine. Third European Wave Energy Conference, Patras, Greece, pp 80–87

    Google Scholar 

  • Boake CB, Whittaker TJT, Folley M, Ellen H (2002) Overview and initial operational experience of the LIMPET wave energy plant. 12th International Offshore and Polar Engineering Conference, Kyushu, Japan, vol 1, p 586–594

    Google Scholar 

  • Count B (1980) Power from Sea Waves. Academic Press, New York (ISBN 0-12-193550-7)

    Google Scholar 

  • Curran R, Denniss T, Boake C (2000) Multidisciplinary Design for Performance: Ocean Wave Energy Conversion. Proc ISOPE’2000, Seattle, USA, pp 434–441 (ISSN 1098-6189)

    Google Scholar 

  • Curran R, Gato LC (1997) The energy conversion performance of several types of Wells turbine designs. Proc Inst Mech Eng A J Pow 211(A2):55–62 (ISSN 0957-6509)

    Google Scholar 

  • Curran R, Whittaker TJT, Raghunathan S, Beattie WC (1998) Performance Prediction of the Counterrotating Wells Turbine for Wave Energy Converters. ASCE J Energ Eng 124:35–53

    Article  Google Scholar 

  • Curran R (2002) Ocean Energy from Wave to Wire. In: Majumdar SK, Miller EW, Panah AI (eds) Renewable Energy: Trends and Prospects. The Pennsylvania Academy of Science, pp 86–121

    Google Scholar 

  • Dhanasekaran TS, Govardhan M (2005) Computational analysis of performance and flow investigation on wells turbine for wave energy conversion. Renew Energ 30(14)2129–2147

    Article  Google Scholar 

  • Eves ARW (1986) The biplane Wells turbine. Master of Science Thesis, The Department of Aeronautical Engineering, The Queen’s University of Belfast, UK

    Google Scholar 

  • Falcão AF, Whittaker TJT, Lewis AW (1994) Joule 2, Preliminary Action: European Pilot Plant Study. European Commission Report, JOUR-CT912-0133, Science Research and Development-Joint Research Center

    Google Scholar 

  • Finnigan T, Auld D (2003) Model Testing of a Variable-Pitch Aerodynamic Turbine. Proc 13th Int Offshore Mechanics and Arctic Engineering Conf, ISOPE, Vol 1, pp 357–360

    Google Scholar 

  • Finnigan T, Alcorn R (2003) Numerical Simulation of a Variable Pitch Turbine with Speed Control. Proc 5th European Wave Energy Conf, Cork, pp 213–220

    Google Scholar 

  • Folley M, Curran R, Boake C, Whittaker TJT (2002) Performance investigations of the LIMPET counter-rotating Wells turbine. Second Marine Renewable Energy Conference, Newcastle, UK

    Google Scholar 

  • Folley M, Curran R, Whittaker TJT (2006) Comparison of LIMPET contra-rotating wells turbine with theoretical and model test predictions. Ocean Eng 33:1056–1069

    Article  Google Scholar 

  • Gato LMC, Falcão AF de O (1989) Aerodynamics of the Wells Turbine: Control by Swinging Rotor-Blades. Int J Mech Sci 31:425–434

    Article  Google Scholar 

  • Gato LMC, Henriques JCC (1994) Optimisation of Symmetrical Blades for Wells Turbine. EU Report for JOULE2-CT93-0333: Air Turbine Development and Assessment for Wave Power Plants

    Google Scholar 

  • Horlock JH (1966) Axial Flow Turbines: Fluid Mechanics and Thermodynamics. Butterworths

    Google Scholar 

  • Inoue M, Kaneko K, Setoguchi T (1987) The Fundamental Characteristics and Future of Wells Turbine for Wave Power Generator. Sci Mach 39(2):275–280

    Google Scholar 

  • Jacobs E, Sherman A (1937) Aerofoil Section Characteristics as Affected by Variations of the Reynolds Number. National Advisory Committee for Aeronautics, Report No. 586

    Google Scholar 

  • Justino PAP Falcão AF (1998) Rotational Speed Control of an OWC Wave Power Plant. Proc of Int Conf on Offshore Mechanics and Artic Engineering (OMAE), Lisbon, Portugal

    Google Scholar 

  • X Kim TW, Kaneko K, Setoguchi T, Inoue M (1988) Aerodynamic performance of an impulse turbine with self-pitch-controlled guide vanes for wave power generator. Proceedings of 1st KSME-JSME Thermal and Fluid Eng Conf, Vol. 2, pp133–137

    Google Scholar 

  • Maeda H, Santhakumar S, Setoguchi T, Takao M, Kinoue Y, Kaneko K (1999) Performance of an impulse turbine with guide vanes for wave power conversion. Renew Energ 17:533–547

    Article  Google Scholar 

  • Mamun M, Kinoue Y, Setoguchi T, Kim TH, Kaneko K, Inoue M (2004) Hysteretic flow characteristics of biplane Wells turbine. Ocean Eng 31(11–12):1423–1435

    Article  Google Scholar 

  • Mei CC (1976) Power extraction from water waves. J Ship Res 20(2):63–66

    Google Scholar 

  • Raghunathan S, Tan CP, Ombaka OO (1985) The Performance of the Wells Self Rectifying Air Turbine. Aeronaut J, pp 369–379

    Google Scholar 

  • Raghunathan S (1995) A Methodology for Wells Turbine Design for Wave Energy Conversion. J Pow Energ IMechE 209:221–232

    Article  Google Scholar 

  • Raghunathan S, Beattie WC (1996) Aerodynamic Performance of Counter-rotating Wells Turbine for Wave Energy Conversion. J Pow Energ 210:431–447

    Google Scholar 

  • Salter SH (1988) World Progress in Wave Energy. Int J Ambient Energ 10:3–24

    Google Scholar 

  • Sarmento AJNA, Gato LMC, Falco AF (1990) Turbine-Controlled Wave Energy Absorption by Oscillating Water Column Devices. Ocean Eng

    Google Scholar 

  • Setoguchi T, Kaneko K, Taniyama H, Maeda H, Inoue M (1996) Impulse turbines with self-pitch-controlled guide vanes for wave power conversion: guide vanes connected by links. Int J Offshore Polar 6:76–80

    Google Scholar 

  • Setoguchi T, Takao M, Kaneko K (1998) Hysteresis on Wells turbine characteristics in reciprocating flow. Int J Rotating Mach 4(1):17–24

    Article  Google Scholar 

  • Setoguchi T, Santhakumar S, Maeda H, Takao M, Kaneko K (2001) A review of impulse turbines for wave energy conversion. Renew Energ 23:261–292

    Article  Google Scholar 

  • Stewart T (1993) The influence of harbour geometry on the performance of OWC wave power converters. Ph.D. Thesis, The Department of Civil Engineering, The Queen’s University of Belfast, UK

    Google Scholar 

  • Thakker A, O’Dowd M, Slater S (1994) Computational Fluid Dynamics Study of Air Flow in a Wells Turbine and Oscillating Water Column Device. EU Report for JOULE2-CT93-0333: Air Turbine Development and Assessment for Wave Power Plants

    Google Scholar 

  • Thakker A, Dhanasekaran TS (2003) Computed effects of tip clearance on performance of impulse turbine for wave energy conversion Renew Energ 29:529–547

    Google Scholar 

  • Thakker A, Dhanasekaran TS (2005) Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion. Renew Energ 30:1359–1372

    Article  Google Scholar 

  • Thakker A, Hourigan F (2005) Computational fluid dynamics analysis of a 0.6 m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes. Renew Energ 30:1387–1399

    Article  Google Scholar 

  • Watterson JK, Raghunathan S (1997) Computed effects of tip clearance on Wells turbine performance. Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No: AIAA-1997-994

    Google Scholar 

  • Wells AA (1976) Fluid Driven Rotary Transducer. British Patent Spec 1 595 700

    Google Scholar 

  • Whittaker TJT, Thompson A, Curran R, Stewart T (1996) Operation of the Islay shoreline wave power plant as a marine test bed for turbine generators, project phase 5. Energy Technology Support Unit Report, ETSU Report No. V/02/0017/00/REP, Harwell, UK

    Google Scholar 

  • Whittaker TJT, Beattie WC, Raghunathan S, Thompson A, Stewart T, Curran R (1997a) The Islay Wave Power Project: an Engineering Perspective. Inst Civil Eng Water Maritime Energ, pp 189–201

    Google Scholar 

  • Whittaker TJT, Thompson A, Curran R, Stewart TP (1997b) European Wave Energy Pilot Plant on Islay (UK). European Commission, Directorate General XII, Science, Research and Development – Joint Research Centre, JOU-CT94-0267

    Google Scholar 

  • Whittaker TJT, Beattie WC, Raghunathan S, Thompson A, Stewart T, Curran R (1997) The Islay wave power project: an engineering perspective. Inst Civil Eng Water Maritime Energ 124:189–201

    Article  Google Scholar 

References (6.2)

  • Baker NJ (2003) Linear generators for direct drive marine renewable energy converters. Ph.D. thesis, School of Engineering, University of Durham

    Google Scholar 

  • Baker NJ, Mueller MA (2004) Permanent magnet air-cored tubular linear generator for marine energy converters. In: IEE Power Electronics and Electrical Machines & Drives Conference, Edinburgh

    Google Scholar 

  • Boldea I, Nasar SA (1999) Linear electric actuators and generators. IEEE Trans Energ Convers 14(3):712–717

    Article  Google Scholar 

  • Chen Z, Spooner E, Norris WT, Williamson AC (1998) Capacitor-assisted excitation of permanent-magnet generators. IEE Proc Electric Pow Applic 145(6):497–508

    Article  Google Scholar 

  • Danielsson O (2006) Wave Energy Conversion – Linear Synchronous Permanent Magnet Generator. Ph.D. thesis, Acta Universitatis Upsaliensis Uppsala

    Google Scholar 

  • Danielsson O, Eriksson M, Leijon M (2006) Study of a longitudinal flux permanent magnet linear generator for wave energy converters. Int J Energ Res 30(14):1130–1145

    Article  Google Scholar 

  • Danielsson O, Leijon M, Sjöstedt E (2006) Detailed Study of the Magnetic Circuit in a Longitudinal Flux Permanent-Magnet Synchronous Linear Generator. IEEE Trans Magnetics 41(9):2490–2495

    Article  Google Scholar 

  • Falnes J, Budal K (1987) Wave power conversion by point absorbers. Norwegian Maritime Res 6(4):2–11

    Google Scholar 

  • Harris MR, Pajooman GH, Abu Sharkh SM (1997) The problem of power factor in vrpm (transverse-flux) machines. In: Eighth International Conference on Electrical Machines and Drives, no 440, pp. 386–390

    Google Scholar 

  • Harris MR, Pajooman GH, Abu Sharkh SM (1997) Comparison of alternative topologies for vrpm (transverse-flux) electrical machines. In: Proceedings of the 1997 IEE Colloquium on New Topologies for Permanent Magnet Machines, Jun 18 1997, IEE Colloquium (Digest), pp 2–1

    Google Scholar 

  • Leijon M, Bernhoff H, Agren O, Isberg J, Sundberg J, Berg M, Karlsson K, Wolfbrandt A (2005) Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator. IEEE Trans Energ Convers 20(1):219–224

    Article  Google Scholar 

  • Leijon M, Danielsson O, Eriksson M, Thorburn K, Bernhoff H, Isberg J, Sundberg J, Ivanova I, Ã…gren O, Karlsson KE, Wolfbrandt A (2006) An electrical approach to wave energy conversion. Renew Energ 31(9):1309–1319

    Article  Google Scholar 

  • McLean GW (1988) Review of recent progress in linear motors. IEE Proc B Electric Pow Applic 135:380–416

    Google Scholar 

  • Mueller MA (2002) Electrical generators for direct drive wave energy converters. IEE Proc Generation Transmission Distribution 149(4):446–456

    Article  Google Scholar 

  • Neuenschwander VL (1985) Wave activated generator. US Patent (540602), 1985-09-03

    Google Scholar 

  • Nilsson K, Danielsson O, Leijon M (2006) Electromagnetic forces in the air gap of a permanent magnet linear generator at no load. J Appl Phys 99(3):1–5

    Article  Google Scholar 

  • Polinder H, Damen MEC, Gardner F (2004) Linear pm generator system for wave energy conversion in the aws. IEEE Trans Energ Convers 19(3):583–589

    Article  Google Scholar 

  • Polinder H, Mecrow BC, Jack AG, Dickinson PG, Mueller MA (2005) Conventional and tfpm linear generators for direct-drive wave energy conversion. IEEE Trans Energ Convers 20(2):260–267

    Article  Google Scholar 

  • Prado MG, Gardner F, Damen M, Polinder H (2006) Modelling and test results of the Archimedes wave swing. Proc I Mech E Part A, J Pow Energ 220(8)855–868 (14)

    Google Scholar 

  • Thorburn K (2006) Electric Energy Conversion Systems: Wave Energy and Hydropower. Ph.D. thesis, Acta Universitatis Upsaliensis Uppsala

    Google Scholar 

  • Xiang J, Brooking PRM, Mueller MA (2002) Control Requirements of Direct Drive Wave Energy Coverters. Proceedings of IEEE TENCON’02

    Google Scholar 

  • Waters R, StÃ¥lberg M, Danielsson O, Svensson O, Gustafsson S, Strömstedt E, Eriksson M, Sundberg J, Leijon M (2007) Experimental results from sea trials of an offshore wave energy system. Appl Phys Lett 90:034105

    Article  Google Scholar 

  • Weh H, Hoffmann H, Landrath J (1988) New permanent magnet excited synchronous machine with high efficiency at low speeds. In: International Conference on Electrical Machines, pp 35–40

    Google Scholar 

References (6.3)

  • Chapple P (2002) Principles of hydraulic system design, Coxmoor Pubishing Company, Oxford (with the British Fluid Power Association)

    Google Scholar 

  • Douglas JF, Gasiorek JM, Swaffield JA, Jack LB (2005) Fluid Mechanics, 5th edn. Pearson Prentice Hall, Harlow, UK, (ISBN 0-13-129293-5)

    Google Scholar 

  • Edinburgh-SCOPA-Laing (1979) Report to the Department of Energy, UK

    Google Scholar 

  • Ehsan MD, Rampen WHS, Taylor JRM (1995) Simulation and dynamic response of computer controlled digital hydraulic pump/motor system used in wave energy power conversion. 2nd European Wave Power Conference, Lisbon, November 1995, pp 305–311

    Google Scholar 

  • Hägglunds (2006) Installation and maintenance manual. EN320-20h 2006, Hägglunds Drives AB, URL: http://www.hagglunds.com/Upload/20060809110542A_en320.pdf, accessed 1st July 2007

    Google Scholar 

  • Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energ 31:271–283

    Article  Google Scholar 

  • Hunt T, Vaughan N (eds) (1996) Hydraulic Handbook, 9th edn. Elsevier Science (ISBN 1856172503)

    Google Scholar 

  • Hydraulics & Pneumatics (Monthly), trade journal of fluid power equipment and systems, published monthly by DFA Media Ltd, Tonbridge, free subscriptions are available to UK residents. URL: http://www.hydraulicspneumatics.com/

    Google Scholar 

  • Ivantysyn J, Ivantysynova M (2000) Hydrostatic pumps and motors: principles, design, performance, modelling, analysis, control and testing. Akademia Books International, New Delhi (ISBN 1-85522-16-2)

    Google Scholar 

  • Majumdar SR (2001) Oil hydraulic systems – principles and maintenance. Tata McGraw-Hill Publishing Company Limited, New Delhi (ISBN 0-07-463748-7)

    Google Scholar 

  • Nebel P (1992) Maximizing the efficiency of wave energy plant using complex conjugate control. Proc Inst Mech Eng I J Systems Control Eng 206(14):225–236

    Google Scholar 

  • Payne GS, Stein UBP, Ehsan M, Caldwell NJ, Rampen WHS (2005) Potential of digital displacement hydraulics for wave energy conversion. Proc 6th European Wave and Tidal Energy Conference, Glasgow, UK, 29th August – 2nd September, pp 365–371 (ISBN 0-947649-425)

    Google Scholar 

  • Rampen WHS, Almond JP, Taylor JRM, Ehsan MD, Salter SH (1995) Progress on the development of the wedding-cake digital hydraulic pump/motor. 2nd European Wave Power Conference, Lisbon, November 1995, pp 289–296

    Google Scholar 

  • Salter SH (1974) Wave power. Nature 249(5459):720–724

    Article  Google Scholar 

  • Salter SH (1980) Recent progress on ducks. IEE Proc A 127(5)

    Google Scholar 

  • Salter SH (1982) The use of gyros as a reference frame in wave energy converters. Proc. second international symposium on wave energy utilization, Trondheim, 22–24 June

    Google Scholar 

  • Salter SH (1993) Changes to the 1981 reference design of spine based ducks. Report to the UK Department of Trade and Industry, June 1992, reprinted as Renewable Energy Clean Power 2000, IEE Conference, 17–19 November, pp 121–130, IEE, London

    Google Scholar 

  • Salter SH, Clerk RC, Rea M (1988) Evolution of the Clerk tri-link hydraulic machine. Proc 8th International Symposium on Fluid Power, Birmingham, UK, 19–21st April, Elsevier, Barking, pp 611–632 (ISBN 1-85166-201-4)

    Google Scholar 

  • Salter SH, Rampen W (1993) The wedding cake multi-eccentric radial piston hydraulic machine with direct computer control of displacement. BHR Group 10th International Conference on Fluid Power, Brugge, Belgium, 5–7th April, Mechanical Engineering Publications, London, pp 47–64 (ISBN 0-85298-869-9)

    Google Scholar 

  • Salter SH, Taylor JRM, Caldwell NJ (2002) Power conversion mechanisms for wave energy. Proc Inst Mech Eng M 216:1–27

    Google Scholar 

  • Yemm R, Henderson R, Taylor C (2000) The PWP Pelamis WEC: Current status and onward programme. Proc 4th European Wave Energy Conference, Alborg Denmark

    Google Scholar 

References (6.4)

  • Abdul-Fattah AF (1986) Selection of solar desalination system for supply of water in remote zones. Desalination 60(2):165–189

    Article  Google Scholar 

  • Al Suleimani Z, Rajendran Nair V (2000) Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman. Appl Energy 65:(1–4)367–380

    Article  Google Scholar 

  • Andrews W, Laker D (2001) A twelve-year history of large scale application of work-exchanger energy recovery technology. Desalination 138:201–206

    Article  Google Scholar 

  • Barlow M, Clark T (2002) Blue Gold. New Press, New York, USA

    Google Scholar 

  • Belessiotis V, Delyannis E (2000) The history of renewable energies for water desalination. Desalination 128(2):147–159

    Article  Google Scholar 

  • Bouguecha S, Hamrouni B, Dhahbi M (2005) Small scale desalination pilots powered by renewable energy sources: case studies. Desalination 183:151–165

    Article  Google Scholar 

  • Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis A, Nielsen K, Petroncini S, Pontes M, Schild P, Sjostrom B-O, Sorensen H, Thorpe T (2002) Wave energy in Europe: current status and perspectives. Renew Sust Energ Rev 6(5):405–431

    Article  Google Scholar 

  • Crerar AJ, Low RE, Pritchard CL (1987) Wave powered desalination. Desalination 67.127–137

    Google Scholar 

  • Crerar AJ (1990) Wave powered desalination. PhD Thesis, The University of Edinburgh

    Google Scholar 

  • Crerar AJ, Pritchard CL (1991) Wavepowered desalination: Experimental and mathematical modelling. Desalination 81(1–3):391–398

    Article  Google Scholar 

  • Cruz JMBP, Sarmento AJNA (2004) Wave Energy: Introduction to the Technological, Economical and Environmental Issues (in Portuguese). Portuguese Ministry for the Environment (ISBN: 972-8577-11-7)

    Google Scholar 

  • Cruz JMBP, Salter SH (2006) Numerical and Experimental Modelling of a Modified Version of the Edinburgh Duck Wave Energy Device. Proc IMechE Part M. J Eng Maritime Environ 220(3):129–147

    Article  Google Scholar 

  • Davies PA (2006) Wave-powered desalination: resource assessment and review of technology. Desalination 186(1):97–109

    Article  Google Scholar 

  • Dempster WF (1999) Biosphere 2 engineering design. Ecol Eng 13(1–4):31–42

    Article  Google Scholar 

  • El-Dessouky H, Ettouney H (2000) MSF development may reduce desalination costs. Water Wastewater Int, pp 20–21

    Google Scholar 

  • Einav R, Harussi K, Perry D (2003) The footprint of the desalination processes on the environment. Desalination 152(1–3):141–154

    Article  Google Scholar 

  • Engelman R, Cincotta RP, Dye B, Gardner-Outlaw T, Wisnewski J (2000) People in the Balance: Population and Natural Resources at the Turn of the Millennium. Population Action International, Washington D.C., USA

    Google Scholar 

  • García-Rodríguez L (2002) Seawater desalination driven by renewable energies: a review. Desalination 143(2).103–113

    Article  Google Scholar 

  • García-Rodríguez L (2003) Renewable energy applications in desalination: state of the art. Solar Energy 75(5).381–393

    Article  Google Scholar 

  • Geisler P, Krumm W, Peters T (1999) Optimisation of the energy demand of reverse osmosis with a pressure-exchange system. Desalination 125:167–172

    Article  Google Scholar 

  • Harris C (1999) Energy recovery for membrane distillation. Desalination 125:173–180

    Article  Google Scholar 

  • Hicks DC, Pleass CM (1985) Physical Mathematical Modelling of a Point Absorber Wave-Energy Conversion System with Non-Linear Damping. In: Evans DV, Falcão de O AF (eds) Hydrodynamics of Ocean Wave-Energy Utilization. Springer-Verlag, Berlin

    Google Scholar 

  • Hicks DC, Mitcheson GR, Pleass CM, Salevan JF (1989) Delbouy: Ocean wave-powered seawater reverse osmosis desalination systems. Desalination 73:81–94

    Article  Google Scholar 

  • Hicks DC (2004) Communication to the Horizon Solution Site (available online at http://www.solutions-site.org/artman/publish/article_60.shtml)

    Google Scholar 

  • Höpner T, Windelberg J (1996) Elements of environmental impact studies on coastal desalination plants. Desalination 108:11–18

    Article  Google Scholar 

  • Husseiny AA, Hamester HL (1981) Engineering design of a 6000 m3/day seawater hybrid RO-ED helio-desalting plant. Desalination 39:171–172

    Article  Google Scholar 

  • Isaacs JD, Seymour RJ (1973) The ocean as a power resource. Int J Environ Stud 4(3):201–205

    Article  Google Scholar 

  • Koklas P, Papathanassiou S (2006) Component sizing for an autonomous wind-driven desalination plant. Renewable Energy 31(13):2122–2139

    Article  Google Scholar 

  • Pleass CM (1974) The use of Wave Powered Seawater Desalination Systems. Proc Int Symp Waves Energy. Canterbury

    Google Scholar 

  • Maratos DF (2003) Technical feasibility of wavepower for seawater desalination using the hydro-ram (Hydram). Desalination 153.287–293

    Article  Google Scholar 

  • McCormick ME (1981) Ocean Wave Energy Conversion. John Wiley & Sons

    Google Scholar 

  • Membrane Technology Newsdesk (2004) Desalination plant is wave-powered. Membrane Technol 2004(3):4

    Google Scholar 

  • Miller JE (2003) Review of Water Resources and Desalination Technologies. Materials Chemistry Department, Sandia National Laboratories, Albuquerque, New Mexico

    Google Scholar 

  • Paulsen K, Hensel F (2005) Introduction of a new Energy Recovery System—optimized for the combination with renewable energy. Desalination 184:211–215

    Article  Google Scholar 

  • Pontes MT (1998) Caracterização Energética das Ondas Marítimas e Estudo dos Problemas de Refracção no seu Aproveitamento. PhD Thesis (in Portuguese). Instituto Superior Técnico, Lisbon, Portugal

    Google Scholar 

  • Pontes MT, Falcão AF (2001) Ocean Energies: Resources and Utilisation. Proc 18th World Energy Conf. Buenos Aires, Argentina (Paper 01-06-02)

    Google Scholar 

  • Raluy RG, Serra L, Uche J, Valero A (2004) Life-cycle assessment of desalination technologies integrated with energy production systems. Desalination 167:445–458

    Article  Google Scholar 

  • Salter SH (1985) Wave Powered Desalination. Proc 4th Conf Energy Rural Island Communities. Pergamon Press, Inverness, UK

    Google Scholar 

  • Salter SH (1989) World progress in wave energy – 1988. Int J Ambient Energy 10(1):3–24

    Google Scholar 

  • Salter SH (2005) High Purity Desalination Using Wave-driven Vapour Compression. World Renew Energy Conf. Aberdeen, UK

    Google Scholar 

  • Schiffler M (2004) Perspectives and challenges for desalination in the 21st century. Desalination 165:1–9

    Article  Google Scholar 

  • Sharmila N, Jalihal P, Swamy AK, Ravindran M (2004) Wave powered desalination system. Energy 9(11):1659–1672

    Article  Google Scholar 

  • Sommariva C, Hogg H, Callister K (2004) Environmental impact of seawater desalination: relations between improvement in efficiency and environmental impact. Desalination 167:439–444

    Article  Google Scholar 

  • Spiegler KS, El-Sayed YM (1994) A Desalination Primer. Balaban Desalination Publications, Santa Maria Imbaro, Italy

    Google Scholar 

  • Stover R (2004) Development of a fourth generation energy recovery device. A CTO’s notebook. Desalination 165:313–321

    Article  Google Scholar 

  • Subiela V, Carta J, González J (2004) The SDAWES project: lessons learnt from an innovative project. Desalination 168:39–47

    Article  Google Scholar 

  • Thomson M, Miranda M, Infield D (2002) A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range. Desalination 153:229–236

    Article  Google Scholar 

  • Thomson M, Infield D (2005) Laboratory demonstration of a photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination 183.105–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Curran, R., Folley, M., Danielsson, O., Thorburn, K., Leijon, M., Taylor, J. (2008). Power Take-Off Systems. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology(Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74895-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74894-6

  • Online ISBN: 978-3-540-74895-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics