Skip to main content

Predicting the Effect of Temperature on the Performance of Elastomer-Based Rail Damping Devices

  • Conference paper
Noise and Vibration Mitigation for Rail Transportation Systems

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 99))

  • 4333 Accesses

Summary

Rail dampers have been developed in recent years, formed by an elastomeric material and embedded steel masses. The loss factor and stiffness of the elastomer are very important for the performance of the system but, unfortunately, both are sensitive to changes in the temperature. Although having a high loss factor gives good noise reduction, it also means greater variation of stiffness, and consequently tuning frequency, with temperature. To investigate the effect of the temperature on the performance of a generic rail damper, a Timoshenko beam model of the track is used, to which is added a single-frequency tuned absorber. The noise reduction at each frequency is found from the ratio of the decay rates of treated and untreated beams. This is introduced into a typical noise spectrum obtained using TWINS. Account is next taken of the physical link between the damping loss factor and the stiffness variation with temperature. By assuming a constant loss factor, the rate of change of stiffness with log frequency is established. Then, using the time-temperature superposition principle, this can be expressed in terms of a temperature-dependence. This is finally used in the prediction of decay rates and thereby noise reduction. The results allow the relative importance of a high loss factor or a temperature-independent stiffness to be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: Tuned damping device for reducing noise from railway track. Applied Acoustics 68, 3–57 (2007)

    Article  Google Scholar 

  2. Jones, C.J.C., Thompson, D.J., Diehl, R.J.: The use of decay rates to analyse the performance of railway track in rolling noise generation. Journal of Sound and Vibration 293, 485–495 (2006)

    Article  Google Scholar 

  3. Wu, T.X., Thompson, D.J.: Analysis of lateral vibration behaviour of railway tracks at high frequencies using a continuously supported multiple beam model. Journal of the Acoustical Society of America 106, 1369–1376 (1999)

    Article  Google Scholar 

  4. Thompson, D.J.: The theory of a continuous damped vibration absorber to reduce broad-band wave propagation in beams. In: ISVR Technical Memorandum, vol. 986, University of Southampton (2007)

    Google Scholar 

  5. Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise, part 1: Description of the model and method. Journal of Sound and Vibration 193, 123–135 (1996)

    Article  Google Scholar 

  6. Schwarzl, F.R., Struik, L.C.E.: Analysis of relaxation measurement. Advance in Molecular Relaxation Processes 1, 201–255 (1968)

    Article  Google Scholar 

  7. Ferry, J.D.: Viscoelastic Properties of Polymers, 2nd edn. Wiley, New York (1970)

    Google Scholar 

  8. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemistry Society 77, 3701–3707 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Burkhard Schulte-Werning David Thompson Pierre-Etienne Gautier Carl Hanson Brian Hemsworth James Nelson Tatsuo Maeda Paul de Vos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, N., Thompson, D.J., Jones, C.J.C., Muhr, A.H. (2008). Predicting the Effect of Temperature on the Performance of Elastomer-Based Rail Damping Devices. In: Schulte-Werning, B., et al. Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74893-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74893-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74892-2

  • Online ISBN: 978-3-540-74893-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics