Skip to main content

GPS and Radiosonde Derived Precipitable Water Vapour Content and its Relationship with 5 Years of Long-Wave Radiation Measurements at “Mario Zucchelli” Station, Terra Nova Bay, Antarctica

  • Chapter

Abstract

The Italian “Mario Zucchelli” Station (-74° 41 55′′.6997 N, 164° 06 10′′. 5887 E), situated at Terra Nova Bay, Northern Victoria Land, is equipped with a permanent Global Positioning System receiver (TNB1), continuously observing since 1998. “Mario Zucchelli” is an Antarctic experimental facility where a large number of scientific observations are carried out, either permanently or seasonally. In particular, an observatory devoted to atmospheric physics is located at Campo Icaro, 2.5 km from the base: it is a Clean Air Facility where several atmospheric measurements are carried out. Since 2000, long-wave radiation measurements are performed routinely using a Kipp&Zonen CNR-1 net radiometer.

The GPS data set acquired over a six-year period spanning 2000–2005 by the permanent GPS station TNB1 is here analyzed, with the aim of retrieving the Precipitable Water (PW) content.

Water vapour radiative effects on the thermal radiation balance of the atmosphere are of basic importance for the energy budget of the surface-atmosphere system in Antarctica, even though Precipitable Water assumes in general appreciably lower values than in other areas of our planet.

Therefore, precise calculations and measurements of the mean long-wave radiation flux density reaching the surface at Terra Nova Bay are presented as a function of Precipitable Water, to give evidence of the relationship existing between this radiative balance term and the total atmospheric content of water vapour.

The GPS-derived PW values are compared with radiosonde-derived PW values measured at Terra Nova Bay. The radiosounding data were analyzed by correcting the temperature data for the errors due to radiation and heat exchange processes and lag effects; the air relative humidity data were corrected for the errors and various dry bias following an accurate procedure recently developed by Tomasi et al. (2006) to reduce the errors and bias affecting the moisture measurements.

The analysis strategies that have been applied to GPS and radiosonde data sets for computing PW are presented, including (i) the relation between the measured radiant-flux density and the GPS-derived PW, and (ii) the comparison with the predicted radiant-flux density derived by a model with five different profiles of temperature and humidity, computed from the set of radiosoundings performed at Terra Nova Bay. GPS- and radiosonde-derived water vapour contents at Terra Nova Bay show a good agreement over the whole sample period, with small discrepancies that will be opportunely discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwind, and E. P. Shettle (1986), AFGL Atmospheric Constituent Profiles (0–120 km), Environmental Research Papers, No. 954, AFGL-TR-86-0110, Optical Physics Division, Air Force Geophysics Laboratory (AFGL), L. G. Hanscom Field, Mass. 01731, 43 pp.

    Google Scholar 

  • Arking A. (1996), Absorption of solar energy in the atmosphere: discrepancy between model and observations, Science, 273, 779–782.

    Article  Google Scholar 

  • Bevis M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Hare (1992), GPS meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System, J. Geophys. Res., 97(D14), 15787–15801.

    Google Scholar 

  • Bevis, M., S. Businger, S. Chiswell, T. Herring, R. Anthes, C. Rocken, and R. Ware (1994), GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol., 33, 379–386.

    Article  Google Scholar 

  • Bignell K. J. (1970), The water-vapour infrared continuum, Q. J. R. Met. Soc., 96, 390–403.

    Article  Google Scholar 

  • Bolton D. (1980), The computation of equivalent potential temperature, Monthly Weather Rev., 108, 1046–1053.

    Article  Google Scholar 

  • Brutsaert W. (1975), On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744.

    Article  Google Scholar 

  • Capra A., M. Dubbini, A. Galeandro, L. Gusella, A. Zanutta, G. Casula, M. Negusini, L. Vittuari, P. Sarti, F. Mancini, S. Gandolfi, M. Montaguti, G. Bitelli (2008), VLNDEF project for geodetic infrastructure definition of Northern Victoria Land, Antarctica, this volume.

    Google Scholar 

  • Chahine M. T. (1992), The hydrological cycle and its influence on climate, Nature, 359, 373–380.

    Article  Google Scholar 

  • Chiou E.-W., M. P. McCormick, W. P. Chu (1997), Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations (1986–1991), J. Geophys. Res., 102, 19105–19118.

    Article  Google Scholar 

  • Clough S. A., F. X. Kneizys, R. W. Davies (1989), Line shape and the water vapor continuum, Atmos. Res., 23, 229–241.

    Article  Google Scholar 

  • Dach R., U. Hugentobler, P. Fridez, M. Meindl (2007), Bernese GPS Software Version 5.0, Astronomical Institute of University of Berne, 612 pp.

    Google Scholar 

  • Davis J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, 1593–1607.

    Article  Google Scholar 

  • Elgered G., J. L. Davis, T. A. Herring, I. I. Shapiro (1991), Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96(B4), 6541–6555.

    Article  Google Scholar 

  • Emardson T. R., G. Elgered, J. M. Johansson (1998), Three months of continuous monitoring of atmospheric water vapour with the network of Global Positioning System receivers, J. Geophys. Res., 103, 1807–1820.

    Article  Google Scholar 

  • Goody R.M. (1964), Atmospheric Radiation, I.– Theoretical Basis, Oxford, Clarendon Press, 436 pp. (see 67232 pp).

    Google Scholar 

  • Gradinarsky L. P., R. Haas, G. Elgered, and J. M. Johansson (2000), Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space, 52(10), 695–698.

    Google Scholar 

  • Haase J., E. Calais, J. Talaya, A. Rius, F. Vespe, R. Santangelo, X.-Y. Huang, J. M. Davila, M. Ge, L. Cucurull (2001), The contributions of the MAGIC project to the COST 716 objectives of assessing the operational potential of ground-based GPS meteorology on an international scale, Phys. Chem. Earth, 26, 433–437.

    Article  Google Scholar 

  • Harries J. E., J. M. Russell III, A. F. Tuck, L. L. Gordley, P. Purcell, K. Stone, R. M. Bevilacqua, M. Gunson, G. Nedoluha, W. A. Traub (1996), Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE), J. Geophys. Res., 101, 10205–10216.

    Article  Google Scholar 

  • Hofmann-Wellenhof B., H. Lichtenegger, J. Collins (2001), Global Positioning System, Theory and practice. 5th ed., Springer Wien NewYork, 382 pp., ISBN 3-211-83534-2.

    Google Scholar 

  • Hopfield H. S. (1969), Two-quartic troposheric refractivity profile for correcting satellite data. J. Geophys. Res., 74(188), 4487–4499.

    Article  Google Scholar 

  • Hopfield H. S. (1971), Troposheric effect on electromagnetically measured range: Prediction from surface weather data, Radio Sci., 6(3), 357–367.

    Article  Google Scholar 

  • Hopfield H. S. (1978), Tropospheric correction of electromagnetic ranging signals to a satellite: A study of parameters. In: Proceedings of International Symposium on Electromagnetic Distance Measurement and the Influence of Atmospheric Refraction (P. Richardus, ed.), Wageningen, The Netherlands, 23–28 May 1977, Netherlands Geodetic Commission, 205–215.

    Google Scholar 

  • Houghton J. T., G. J. Jenkins, and J. J. Ephraums (1990), Intergovernmental Panel on Climate Change (IPCC) Report, Climate Change, The IPCC Scientific Assessment, U.K. Meteorological Office, Bracknell, England, 364 pp.

    Google Scholar 

  • Houghton J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (Eds.), (2001), IPCC, 2001: Climate Change 200:, The Scientific Basis. Contribution of Working Group I to the Third Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 881 pp.

    Google Scholar 

  • Huovila S., and A. Tuominen (1991), Influence of radiosonde lag errors on upper-air climatological data. In Seventh Symposium on Meteorological Observations and Instrumentation, Special Sessions on Laser Atmospheric Studies, Boston, American Meteorological Society, New Orleans, January 14–18, 1991, 237–242.

    Google Scholar 

  • Idso S. B. (1981), A set of equations for full spectrum and 8 to 14 μm and 10-5 to 12.5 μm thermal radiation from cloudless skies, Water Resour. Res., 17(2), 295–304.

    Article  Google Scholar 

  • Johnsen K. P., J. Miao, and S. Q. Kidder (2004), Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B data, Phys. Chem. of the Earth, 29, 251–255.

    Article  Google Scholar 

  • Kiehl J. T., and K. E. Trenberth (1997), Earth’s annual global mean energy budget, Bull. Am. Met. Soc., 78, 197–208.

    Article  Google Scholar 

  • Kneizys F. X., L. Abreu, G. P. Anderson, J. H. Chetwind, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, (1996), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL (Abreu L. W., and G. P. Anderson, eds.). Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, Mass., 261 pp.

    Google Scholar 

  • Kondratyev K. Ya. (1969), Radiation in the Atmosphere, New York, Academic Press, 912pp. (see 85–159pp).

    Google Scholar 

  • Lahoz W. A., A. O’Neill, A. Heaps, V. D. Pope, R. Swinbank, R. S. Harwood, L. Froidevaux, W. G. Read, J. W. Waters, and G. E. Peckham (1996), Vortex dynamics and the evolution of water vapour in the stratosphere of the southern hemisphere, Q. J. R. Met. Soc., 122, 423–450.

    Article  Google Scholar 

  • Leckner B. (1978), The spectral distribution of solar radiation at the Earth’s surface – Elements of a model, Solar Energy, 20, 143–150.

    Article  Google Scholar 

  • Long C. N., and T. P. Ackerman (2000), Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15609–15626.

    Article  Google Scholar 

  • Luers, J. K., and R. E Eskridge (1995), Temperature corrections for the VIZ and Vaisala radiosondes, J. Appl. Met., 34, 1241–1253.

    Article  Google Scholar 

  • Marsden D., and F. P. J. Valero (2004), Observation of water vapour greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745–753.

    Article  Google Scholar 

  • Miao J., K. Kunzi, G. Heygster, T. A. Lachlan-Cope, and J. Turner (2001), Atmospheric water vapor over Antarctica derived from Special Sensor Microwave/Temperature 2 data, J. Geophys. Res., 106(D10), 10187–10204.

    Article  Google Scholar 

  • Miloshevich L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans (2001), Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures, J. Atmos. Oc. Techn., 18, 135–156.

    Article  Google Scholar 

  • Miloshevich L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans (2004), Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oc. Techn., 21, 1305–1327.

    Article  Google Scholar 

  • Niell A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101, 3227–3246.

    Article  Google Scholar 

  • Niell A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and A. Upham, (2001), Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI, J. Atmos. Oc. Techn., 18, 830–850.

    Article  Google Scholar 

  • Randel W. J., F. Wu, A. Gettelman, J. M. Russell III, J. M. Zawodny, and S. J. Oltmans (2001), Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 106, 14313–14325.

    Article  Google Scholar 

  • Ricchiazzi P., S. Yang, C. Gautier, and D Sowle (1998), SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere, Bull. Am. Meteor. Soc., 79(10), 2101–2114.

    Article  Google Scholar 

  • Rind D. (1998), Climate change: Just add water vapor, Science, 281(5380), 1152–1153.

    Article  Google Scholar 

  • Rocken C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensing atmospheric water vapor with the Global Positioning System, Geophys. Res. Lett., 20, 2631–2634.

    Article  Google Scholar 

  • Saastamoinen J. (1972), Contributions to the theory of atmospheric refraction, Bull. Geod., 105, 279–298; 106, 383–397.

    Article  Google Scholar 

  • Saastamoinen J. (1973), Contributions to the theory of atmospheric refraction, Bull. Geod., 107, 13–34.

    Article  Google Scholar 

  • Schuh H., J. Boehm, G. Engelhardt, D. MacMillan, R. Lanotte, P. Tomasi, M. Negusini, I. Vereshchagina, V. Gubanov, and R. Haas (2005), Determination of tropospheric parameters within the new IVS Pilot Project. In: A Window on the Future of Geodesy, Proceedings of the IAG General Assembly, Sapporo, Japan, June 30–July 11, 2003 (F. Sanso, ed.), Springer, IAG, 128, pp. 125–130.

    Google Scholar 

  • Smith E. K., and S. Weintraub (1953), The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE, 41, 1035–1037.

    Article  Google Scholar 

  • Starr D., and S. H. Melfi (1991), The Role of Water Vapour in Climate, A Strategic Research Plan for the Proposed GEWEX Water Vapour Project (GVaP), NASA Conference Publ. 3210, 60pp.

    Google Scholar 

  • Tomasi C., R. Guzzi, and O. Vittori (1974), A search for the e-effect in the atmospheric water vapor continuum, J. Atmos. Sci., 31, 255–260.

    Article  Google Scholar 

  • Tomasi C., and F. Trombetti (1985), Absorption and emission by Minor Atmospheric Gases in the Radiation Balance of the Earth, La Rivista del Nuovo Cimento, 8(No. 2), Monograph, pp. 89.

    Article  Google Scholar 

  • Tomasi C., V. Vitale, M. Tagliazucca, and L. Gasperoni (1990), Infrared hygrometry measurements at Terra Nova Bay, SIF Conference Proceedings, 27, 187–200.

    Google Scholar 

  • Tomasi C., S. Marani, V. Vitale, F. Wagner, A. Cacciari, and A. Lupi (2000), Precipitable water evaluations from infrared sun-photometric measurements analyzed using the atmospheric hygrometry technique, Tellus, 52B, 734–749.

    Google Scholar 

  • Tomasi C., A. Cacciari, V. Vitale, A. Lupi, C. Lanconelli, A. Pellegrini, and P. Grigioni (2004), Mean vertical profiles of temperature and absolute humidity from a twelve-year radiosounding data-set at Terra Nova Bay (Antarctica), Atmos. Res., 71, 139–169.

    Article  Google Scholar 

  • Tomasi C., B. Petkov, E. Benedetti, V. Vitale, A. Pellegrini, G. Dargaud, L. De Silvestri, P. Grigioni, E. Fossat, W. L. Roth, and L. Valenziano (2006), Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months, J. Geophys. Res., 111, D20305, doi:10.1029/2005JD006976.

    Google Scholar 

  • Tregoning P., R. Boers, D. O’Brien, and M. Hendy (1998), Accuracy of absolute precipitable water vapor estimates from GPS observations, J. Geophys. Res., 103, 28701–28710.

    Article  Google Scholar 

  • Vey S., R. Dietrich, K.-P. Johnsen, J. Miao, and G. Heygster (2004), Comparison of tropospheric water vapour over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis, Jour. Met. Soc. Japan, 82, 259–267.

    Article  Google Scholar 

  • Wang J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine (2002), Corrections of humidity measurement errors from the Vaisala RS80 radiosonde – Application to TOGA COARE data, J. Atmos. Oc. Techn., 19, 981–1002.

    Article  Google Scholar 

  • Yamanouchi T., and T. O. Charlok (1995), Comparison of radiation budget at TOA and surface in the Antarctica from ERBE and ground surface measurements, J. Climate, 8, 3109–3120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarti, P., Negusini, M., Lanconelli, C., Lupi, A., Tomasi, C., Cacciari, A. (2008). GPS and Radiosonde Derived Precipitable Water Vapour Content and its Relationship with 5 Years of Long-Wave Radiation Measurements at “Mario Zucchelli” Station, Terra Nova Bay, Antarctica. In: Capra, A., Dietrich, R. (eds) Geodetic and Geophysical Observations in Antarctica. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74882-3_9

Download citation

Publish with us

Policies and ethics