Skip to main content

Validation of the Atmospheric Water Vapour Content from NCEP Using GPS Observations Over Antarctica

  • Chapter
Geodetic and Geophysical Observations in Antarctica

Abstract

An evaluation of the precipitable water (PW) in the reanalysis of the National Center for Environmental Prediction (NCEP) over Antarctica was carried out using observations from eight coastal Antarctic GPS stations. PW time series were derived from tropospheric parameters in conjunction with meteorological observations provided by the British Antarctic Survey for the period from 1994 to 2004 with a 2h temporal resolution. The tropospheric parameters this study is based on are a product of the common GPS reprocessing from the Universities of Technology in Munic and Dresden.

The validation of NCEP PW reveals an underestimation of the seasonal signal in the PW from NCEP by 25% on the coast of East Antarctica and an overestimation of the PW by about 10% on the Antarctic Peninsula. Subdaily variations in the Antarctic PW are not correctly represented by NCEP due to the coarse spatial and temporal resolution of the global model. The agreement between GPS and NCEP PW is much better for most of the other regions on the earth than it is over Antarctica. The reason for the higher un-certainties in the Antarctic PW from NCEP is the lower availability of water vapour data in other region on the earth than it is over Antarctica. The reason for the higher un-certainties in the Antarctic PW from NCEP is the lower availability of water vapour data in the southern hemisphere especially, over Antarctica. PW values derived from GPS data could help to fill the large gape of water vapour data over Antarctica and could be assimilated in numerical weather prediction models within the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994). GPS meteorology: mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 33(3):379–386.

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken CR, Anthes A, Ware RH (1992). GPS meteorology: remote sensing of the atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97(D14):15787–15801.

    Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005). Impact of higher-order ionospheric terms on GPS estimates. Geophysical Research Letters, 32. L23311, doi:10.1029/2005GL024342.

    Google Scholar 

  • Gaffen DJ, Sargent MA, Habermann RE, Lanzante JR (2000). Sensitivity of tropospheric and stratospheric temperature trends to radiosonde data quality. Journal of Climate, 13:1776–1796.

    Article  Google Scholar 

  • Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004). Near real time GPS water vapor monitoring for numerical weather prediction in Germany. Journal of the Meteorological Society of Japan, 82(1B):361–380.

    Article  Google Scholar 

  • Giovinetto MB, Yamazaki K, Wendler G, Bromwich DH (1997). Atmospheric net transport of water vapor and latent heat across 60ˆS. Journal of Geophysical Research, 102(D10):11171–11179.

    Article  Google Scholar 

  • Guerova G, Bettems J-M, Brockmann E, Matzler C (2006). Assimilation of COST 716 near-real time GPS data in the nonhydrostatic limited area model used at Meteo-Swiss. Meteorology and Atmospheric Physics, 91:149–164, doi: 10.1007/s00703.005.0110.6.

    Article  Google Scholar 

  • Hagemann S, Bengtsson L, Gendt G, (2003). On the determination of atmospheric water vapor from GPS measurements. Journal of Geophysical Research, 108(D21):4678, doi:10.1029/2002JD003235.

    Article  Google Scholar 

  • Huybrechts P, Gregory J, Janssens I, Wild M (2004). Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change, 42(1–2):83–105.

    Article  Google Scholar 

  • Johnsen KP, Miao J, Kidder SQ (2004). Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B data. Physics and Chemistry of the Earth, 29(2):251–255.

    Google Scholar 

  • Kalnay, E. u.a. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3):437–471.

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W. Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002). NCEP-DOE AMIP-II Reanalysis (R2). American Meteorological Society, S. 1631–1643.

    Google Scholar 

  • King JC, Turner J (1997). Antarctic Meteorology and Climatology. Cambridge University Press.

    Google Scholar 

  • Kistler, R. u.a. (2001). The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2):247–267.

    Google Scholar 

  • Miloshevich ML, Vommel H, Whiteman DN, Lesht BM, Schmidlin FJ, Russo F (2006). Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. Journal of Geophysical Research, 111:D09S10, doi:10.1029/2005JD006083.

    Article  Google Scholar 

  • Niell AE (2000). Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space, 52:699–702.

    Google Scholar 

  • Philipona R, Dürr B, Ohmura A, Ruckstuhl C. (2005). Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophysical Research Letters, 32:L19809, doi:10.1029/2005GL023624.

    Article  Google Scholar 

  • Rocken C, Ware R, Van HT, Solheim F, Alber C, Johnson J (1993). Sensing atmospheric water vapor with the global positioning system. Geophysical Research Letters, 20(23):2631–2634.

    Article  Google Scholar 

  • Rossow WR (1996). Radiation and Water in the Climate System: Remote Measurements, Band 45 of NATOASI Series 1: Global Environmental Change, chapter Remote Sensing of Atmospheric Water Vapor, S. 175–191.

    Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005). Absolute phase center corrections of satellite and receiver antennas. GPS Solutions, 9:283–293, doi 10.1007/s10291-005-0134-x.

    Article  Google Scholar 

  • Schupler BR (2001) The response of GPS antennas – how design, environment and frequency affect what you see. Physics and Chemistry of the Earth, 26(6–8):605–611.

    Google Scholar 

  • Soden BJ, Lanzante JR (1996) An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. Journal of Climate, 9:1235–1250.

    Article  Google Scholar 

  • Soden BJ, Turner DD, Lesht BM, Miloshevich LM (2004). An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Programm. Journal of Geophysical Research, 109:D04105, doi:10.1029/2003JD003828.

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. Journal of Geophysical Research, 111:B05402, doi:10.1029/2005JB003747.

    Article  Google Scholar 

  • Tregoning P, Boers R, O’Brien D, Hendy M (1998) Accuracy of absolute precipitable water vapor estimates from GPS observations. Journal of Geophysical Research, 103(D22):28701–28710.

    Article  Google Scholar 

  • Turner J, Connolley WM, Leonard S, Marshall GJ, Vaughan DG (1999) Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF reanalysis project data. International Journal of Climatology, 19(7):697–724.

    Article  Google Scholar 

  • Vedel H, Huang XY (2004) Impact on ground based GPS data on numerical weather prediction. Journal of the Meteorological Society of Japan, 82(1B):459–472.

    Article  Google Scholar 

  • Vey S, Dietrich R, Fritsche M, Rülke A, Rothacher M, Steigenberger P (2006) Influence of mapping function parameters on global GPS network analyses: comparisons between NMF and IMF. Geophysical Research Letters, 33:L01814, doi:10.1029/2005GL024361.

    Article  Google Scholar 

  • Vey S, Dietrich R, Johnsen KP, Miao J, Heygster G (2004). Comparison of tropospheric water vapour over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis. Journal of the Meteorological Society of Japan, 82(1B):259–267.

    Article  Google Scholar 

  • Wang JR, Racette P, Triesky ME, Manning W (2002) Retrievals of column water vapor using millimeter-wave radiometric measurements. IEEE Transactions on Geoscience and Remote Sensing, 40(6):1220–1229.

    Article  Google Scholar 

  • Wickert J, Beyerle G, König R, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio occultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae, 23:653–658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vey, S., Dietrich, R. (2008). Validation of the Atmospheric Water Vapour Content from NCEP Using GPS Observations Over Antarctica. In: Capra, A., Dietrich, R. (eds) Geodetic and Geophysical Observations in Antarctica. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74882-3_7

Download citation

Publish with us

Policies and ethics