Skip to main content

Technologies to Operate Year-Round Remote Global Navigation Satellite System (GNSS) Stations in Extreme Environments

  • Chapter
Geodetic and Geophysical Observations in Antarctica

Abstract

The POLar Earth observing NETwork(POLENET) is an ambitious international project to deploy geophysical instruments at very remote high-latitude sites during the International Polar Year (IPY). One of the goals of the project is to run instruments year round with as little maintenance as possible. POLENET will be installed using robust lightweight systems, minimizing the need for heavy battery banks as much as possible. This weight reduction is needed in order to meet logistical constraints on deployment at very remote sites. New and established technologies for Global Navigation Satellite System (GNSS) stations are critically examined here in order to determine the best balance between reliable power generation and storage and the logistical cost to deploy such a system. Best practices are summarized from successful projects that have run reliably in extreme polar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalati W, Krabill WB, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas RH, Wright W and Yungel J (2001) Outlet glacier and margin elevation changes: Near-coastal thinning of the Greenland ice sheet. J Geophys Res, vol 106 (D24): 33729–33741

    Article  Google Scholar 

  • Akhmatov V, Galster G and Larsen E (1998) Questionable effects of antireflective coatings on inefficiently cooled solar cells. Solar Energy Materials and Solar Cells, vol 56: 17–28

    Article  Google Scholar 

  • Anandakrishnan S, Voigt D, Burkett PG, Long B and Henry R (2000) Deployment of a broadband seismic network in West Antarctica. Geophys Res Lett, vol 27 (14): 2053–2056

    Article  Google Scholar 

  • Anderson PS, Ladkin RS and Renfrew IA (2005) An autonomous doppler sodar wind profiling system. J Atmos Oceanic Technol, vol 22: 1309–1325

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD and Tapley BD (2006a) Antarctic mass rates from GRACE. Geophys Res Lett, vol 33: doi: L11502, 10.1029/2006GL026369

    Google Scholar 

  • Chen JL, Wilson CR and Tapley BD (2006b) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, vol 313: 1958–1960 doi: 10.1126/science.1129007

    Article  Google Scholar 

  • Dahl T (2006) “Wind Power Systems”. PolarPower.org, 5th April 2006, p. 38 http://www.polarpower.org/static/docs/WindPower05Apr06.pdf

    Google Scholar 

  • Datta BK, Velaytham G and Goud AP (2002) Fuel cell power source for a cold region. J Power Sources, vol 106: 370–376

    Article  Google Scholar 

  • Deb SK (1998) Recent developments in high efficiency photovoltaic cells. Renewable Energy, vol 15: 467–472

    Article  Google Scholar 

  • Delahoy AE, Chen L, Akhtar M, Sang B and Guo S (2004) New technologies for CIGS photovoltaics. Solar Energy, vol 77: 785–793 doi:10.1016/j.solener.2004.08.012

    Google Scholar 

  • Donnellan A and Luyendyk BP (2004) GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land. Global and Planetary Change, vol 42: 305–311 doi:10.1016/j.gloplacha.2004.02.006

    Article  Google Scholar 

  • Dow JM, Neilan RE and Gendt G (2005) The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade. Adv SpaceRes, vol 36 (3): 320–326 doi:10.1016/j.asr.2005.05.125

    Google Scholar 

  • Fleming K and Lambeck K (2004) Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. QSR, vol 23: 1053–1077 doi:10.1016/j.quascirev.2003.11.001

    Article  Google Scholar 

  • Häring P and Giess H (2003) Performance of a VRLA battery in the Arctic environment. J Power Sources, vol 116: 257–262 doi:10.1016/S0378-7753(02)00699-7

    Article  Google Scholar 

  • Ivins ER and James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarctic Sci, vol 17 (4): 541–553 doi: 10.1017/S0954102005002968

    Article  Google Scholar 

  • James TS and Ivins ER (1998) Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. J Geophys Res, vol 103 (B3): 4993–5017

    Article  Google Scholar 

  • Joughin I, Rignot E, Rosanova CE and Lucchitta BK (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. J Geophys Res, vol 30 (13): doi: 10.1029/2003GL017609, 2003

    Google Scholar 

  • Kyle PR (2007) “The Edge of Discovery”. The Antarctic Sun, 14th January 2007. http://antarcticsun.usap.gov/2006-2007/documents/01-14-2007_antarcticsun.pdf

    Google Scholar 

  • Llubes M, Lemoine J-M and Remy F (2007) Antarctica seasonal mass variations detected by GRACE. Earth Plan Scie Lett, vol 260: 127–136 doi: 10.1016/j.epsl.2007.05.022

    Article  Google Scholar 

  • Luthcke SB, Zwally J, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ and Chinn DS (2006) Recent Greenland Ice Mass Loss by drainage system from satellite gravity observations. Science, vol 314: 1286–1289 doi: 10.1126/science.1130776

    Article  Google Scholar 

  • Moore A, W. (2007). “The International GNSS Service: Any Questions?” GPS World 18 (1): 58–62

    Google Scholar 

  • Nishioka K, Hatayama T, Uraoka Y, Fuyuki T, Haguhara R and Watanabe M (2003) Field-test analysis of PV system output characteristics focusing on module temperature. Solar Energy Materials and Solar Cells, vol 75: 665–671

    Article  Google Scholar 

  • Prescott WH, Anderson K, Johns B and Simpson D (2006) “Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica”. National Science Foundation, http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0619908 & http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0619708

    Google Scholar 

  • Rachelson W (2006) “AGO Field Service Summary, December 2005–February 2006”. Augsburg College, p. 15 http://space.augsburg.edu/ago/05_06sum.pdf

    Google Scholar 

  • Rannels J (2000) The DOE Office of Solar Energy Technologies’ Vision for Advancing Solar Technologies in the New Millennium. Solar Energy, vol 69 (5): 363–368

    Article  Google Scholar 

  • Ratnakumar BV, Smart MC, Kindler A, Frank H, Ewell RC and Surampudi S (2003a) Lithium batteries for aerospace applications: 2003 Mars Exploration Rover. J Power Sources, vol 119–121: 906–910 doi:10.1016/S0378-7753(03)00220-9

    Google Scholar 

  • Ratnakumar BV, Smart MC, Whitcanack LD, Knight J, Ewell RC, Surampudi R, Pugliam F and Curran T (2003b). “Lithium Ion Batteries for Mars Exploration Rovers”. Space Power Workshop, Redondo Beach, CA. April 21–24th

    Google Scholar 

  • Rignot E, Jezek KC and Sohn HG (1995) Ice Flow Dynamics of the Greenland Ice Sheet from SAR Interferometry. Geophys Res Lett, vol 22 (5): 575–578

    Article  Google Scholar 

  • Ryu K, Rhee J-G, Park K-M and Kim J (2006) Concept and design of modular Fresnel lenses for concentration solar PV system. Solar Energy, vol 80: 1580–1587 doi:10.1016/j.solener.2005.12.006

    Article  Google Scholar 

  • Schmidt M and Schwerfeger F (1998) Applications for silica aerogel products. J Non-Crystalline Solids, vol 225: 364–368

    Article  Google Scholar 

  • Shibuya K, Doi K, Nogi Y, Aoyama Y, Ohzono M, Morita K and Egawa K (2006). “Recent GPS Application for geodynamic research during the Japanese Antarctic Research Expeditions”. GPS in the IPY: The POLENET Project, Dresden, Germany. October 4–6

    Google Scholar 

  • Sifer N and Gardner K (2004) An analysis of hydrogen production from ammonia hydride hydrogen generators for use in military fuel cell environments. J Power Sources, vol 132: 135–138 doi:10.1016/j.jpowsour.2003.09.076

    Article  Google Scholar 

  • Skone S and de Jong M (2000) The impact of geomagnetic substorms on GPS receiver performance. Earth Planets Space, vol 52: 1067–1071

    Google Scholar 

  • Skone SH (2001) The impact of magnetic storms on GPS receiver performance. J Geodesy, vol 75 (9–10): 457–468 doi:10.1007/s001900100198

    Article  Google Scholar 

  • Smart MC, Bugga R, Ewell RC, Whitcanack LD, Chin KB and Surampudi R (2004). “Validation of Lithium-Ion Cell Technology for JPL’s 2003 Mars Exploration Rover Mission”. 2nd International Energy Conversion Engineering Conference, Providence, Rhode Island. August 16–19, 2004

    Google Scholar 

  • Smart MC, Ratnakumar BV, Whitcanack LD, Chin KB, Surampudi S, Croft H, Tice D and Staniewicz R (2003) Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources, vol 119–121: 349–358 doi:10.1016/S0378-7753(03)00154-X

    Article  Google Scholar 

  • Smith DM, Maskara A and Boes U (1998) Aerogel-based thermal insulation. J Non-Crystalline Solids, vol 225: 254–259

    Article  Google Scholar 

  • Srinivasan S, Mosdale R, Stevens P and Yang C (1999) FUEL CELLS: Reaching the Era of Clean and Efficient Power Generation in the Twenty-First Century. Ann Rev Energy Environ, vol 24. pp. 281–328

    Article  Google Scholar 

  • Sterling R (2005) “AGO Field Service, December 2004–January 2005”. Augsburg College, p.12 http://space.augsburg.edu/ago/04_05sum.pdf

    Google Scholar 

  • Thomas RH, Frederick E, Krabill WB, Manizade S and Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett, vol 33 (L10503) doi: 10.1029/2006GL026075

    Article  Google Scholar 

  • Tregoning P, Welsh A, McQueen H and Lambeck K (2000) The search for postglacial rebound near the Lambert Glacier, Antarctica. Earth Planets Space, vol 52: 1037–1041

    Google Scholar 

  • Willis MJ, Wilson TJ and James TS (2006) Bedrock Motions From a Decade of GPS Measurements in Southern Victoria Land, Antarctica. Eos Trans AGU, vol 87 (52): Abstract G33B-0059

    Google Scholar 

  • Yoshioka K, Hasegawa J, Saitoh T and Yatabe S (2002). “Performance analysis of a PV array installed on building walls in a snowy country”. Photovoltaic Specialists Conference, 2002 Conference Record of the Twenty-Ninth IEEE

    Google Scholar 

  • Zwartz D and Helsen M (2002) “GPS Observations for Ice Sheet History (GOFISH)”. Institute for Marine and Atmospheric Research, Utrech University, Dec 2001–Jan 2002, p. 22 http://www.phys.uu.nl/%7Ewwwimau/research/ice_climate/gofish.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willis, M.J. (2008). Technologies to Operate Year-Round Remote Global Navigation Satellite System (GNSS) Stations in Extreme Environments. In: Capra, A., Dietrich, R. (eds) Geodetic and Geophysical Observations in Antarctica. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74882-3_2

Download citation

Publish with us

Policies and ethics