Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avvakumov, E.G., Djakova, V.E. and Strugova, L.I. (1974) Mechanical activation of solid-state reactions. 4. Solid state reduction of cassiterite. Izvestija SO AN SSSR, seria chimiceskich nauk 2, 26–29 (in Russian).

    Google Scholar 

  • Avvakumov, E.G. and Strugova, L.I. (1974) Mechanical activation of solid-state reactions. 6. Application of diffusionsless kinetics for mechanochemical reactions in solid mixtures. Izvestija SO AN SSSR, seria chimiceskich nauk 2, 34–38 (in Russian).

    Google Scholar 

  • Avvakumov, E.G., Matycin, L.I. and Staver, A.M. (1975) Solid state reduction of SnO2 by compression and mechanical activation. Fizika gorenija i vzryva 6, 922–927 (in Russian).

    Google Scholar 

  • Avvakumov, E.G. (1986) Mechanical Methods of the Activation of Chemical Processes. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Baláž, P., Post, E. and Bastl, Z. (1992) Thermoanalytical study of mechanically activated cinnabar. Thermochimica Acta 196, 371–377.

    Article  Google Scholar 

  • Baláž, P., Havlík, T., Bastl, Z. and Briancin, J. (1995) Mechanosynthesis of iron sulphides. Journal of Material Science Letters 14, 344–346.

    Article  Google Scholar 

  • Baláž, P. (2000) Extractive Metallurgy of Activated Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Baláž, P. and Briančin, J. (2001) Direct reduction of mechanically activated galena and sphalerite with hydrogen. Journal of Thermal Analysis and Calorimetry 65, 769–776.

    Article  Google Scholar 

  • Baláž, P. and Godočíková, E. (2001) Thermal reduction of mechanically activated cinnabar (HgS) and stibnite (Sb2S3). Journal of Thermal Analysis and Calorimetry 65, 51–57.

    Article  Google Scholar 

  • Baláž, P., Boldižárová, E. and Bajger, Z. (2001c) Non-traditional way of magnetite recovery from metallurgical waste. Acta Metallurgica Slovaca 7, 97–100.

    Google Scholar 

  • Baláž, P., Godočíková, E., Boldižárová, E., Luxová, M., Bastl, Z. and Jiang, J.Z. (2002a) Characterization of nanocrystalline products prepared by mechanochemical reduction of copper sulphide. Czechoslovak Journal of Physics, Supplement A 52, A65–A68.

    Google Scholar 

  • Baláž, P., Takacs, L., Jiang, J.Z., Soika, V. and Luxová, M. (2002b) Mechanochemical reduction of copper sulphide. Materials Science Forum 386–388, 257–262.

    Google Scholar 

  • Baláž, P., Takacs, L., Boldižárová, E. and Godočíková, E. (2003) Mechanochemical transformations and reactivity in copper sulphides. Journal of Physics and Chemistry of Solids 64, 1413–1417.

    Article  CAS  Google Scholar 

  • Baláž, P., Aláčová, A., Godočíková, E., Kováč, J., Škorvánek, I. and Jiang, J.Z. (2004a) Study of magnetic properties of nanopowders prepared by pyrite-troilite transformation via high energy milling. Czechoslovak Journal of Physics, Supplement D, 54, D197–D200.

    Article  Google Scholar 

  • Baláž, P., Godočíková, E., Aláčová, A., Škorvánek, I., Kováč, J. and Jiang, J.Z. (2004b) Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling. Czechoslovak Journal of Physics, Supplement D 54, D121–D124.

    Article  Google Scholar 

  • Baláž, P., Takacs, L., Luxová, M., Godočíková, E. and Ficeriová, J. (2004c) Mechanochemical processing of sulphidic minerals. International Journal of Mineral Processing 74S, 365–371.

    Article  CAS  Google Scholar 

  • Baláž, P., Godočíková, E., Krilová, L., Lobotka, P. and Gock, E. (2004d) Preparation of nanocrystalline materials by high energy milling. Materials Science and Engineering A 386A, 442–446.

    Google Scholar 

  • Baláž, P., Godočíková, E., Takacs, L. and Gock, E. (2005a) Mechanochemical preparation of metal/sulphide nanocomposite particles. International Journal of Materials and Product Technology 23, 26–41.

    Google Scholar 

  • Baláž, P., Boldižárová, E. and Godočíková, E. (2005b) Preparation of nanocrystalline copper and copper silicon sulphide by mechanochemical route. Materials Science Forum 480–481, 453–456.

    Google Scholar 

  • Baláž, P., Takacs, L., Godočíková, E., Škorvánek, I., Kovác, J. and Choi, W.S. (2007) Preparation of nanosized antimony by mechanochemical reduction of antimony sulphide Sb2S3. Journal of Alloys and Compounds 434–435, 773–775.

    Article  CAS  Google Scholar 

  • Banza, A.N. and Gock, E. (2003) Mechanochemical processing of chrysocolla with sodium sulphide. Minerals Engineering 16, 1349–1354.

    Article  CAS  Google Scholar 

  • Basset, D., Matteazzi, P. and Miani, F. (1994) Kinetic effects in mechanically activated solid-state reduction of hematite. Hyperfine Interactions 94, 2235–2238.

    Article  CAS  Google Scholar 

  • Beecroft, L.L. and Ober, C.K. (1997) Advanced nanocomposite materials for optical applications. Chemistry of Materials 9, 1302–1317.

    Article  CAS  Google Scholar 

  • Benjamin, J.S. (1970) Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions 1, 2946–2951.

    Google Scholar 

  • Boldyrev, V.V. (1993) Mechanochemistry and mechanical activation of solids. Solid State Ionics 63–65, 537–543.

    Article  Google Scholar 

  • Boldyrev, V.V. (1996a) Mechanochemistry and mechanical activation. Materials Science Forum 225–227, 511–520.

    Google Scholar 

  • Boldyrev, V.V. (1996b) Reactivity of solids and new technologies. In: V.V. Boldyrev (Ed.) Reactivity of Solids: Past, Present and Future. Blackwell Science, Oxford, pp. 267–285.

    Google Scholar 

  • Boldyrev, V.V. and Avvakumov, E.G. (1971) Mechanochemistry of inorganic solids. Uspechi chimiji 40, 1835–1856 (in Russian).

    CAS  Google Scholar 

  • Boldyrev, V.V. (1979) Control of reactivity of solids. Annual Revne of Materials Science 9, 455–469.

    Article  CAS  Google Scholar 

  • Boldyrev, V.V. (1998) Mechanical activation and its application in technology. Materials Science Forum 269–272, 227–234.

    Google Scholar 

  • Boldyrev, V.V. and Tkáčová, K. (2000) Mechanochemistry of solids: past, present and prospects. Journal of Materials Synthesis 8, 121–132.

    Article  CAS  Google Scholar 

  • Boldyrev, V.V. (2006) Mechanochemistry and mechanical activation of solids. Russian Chemical Reviews 75, 177–189.

    Article  CAS  Google Scholar 

  • Botta, P.M., Aglietti, E.F. and Porto Lopez, J.M. (2000) Thermal and phase evolution of mechanochemical reactions in the Al-Fe3O4 system. Thermochimica Acta 363, 143–147

    Article  CAS  Google Scholar 

  • Budnikov, P.P. and Ginstling, A.M. (1971) Reactions in Solid Mixtures. Strojizdat, Moscow (in Russian).

    Google Scholar 

  • Burkin, A.R. (1966) The Chemistry of Hydrometallurgical Processes. Spou, London.

    Google Scholar 

  • Butyagin, P.J. (1971) Kinetics and nature of mechanochemical reactions. Uspechi chimiji 40, 1935–1959.

    CAS  Google Scholar 

  • Butyagin, P.J., Avvakumov, E.G. and Kolbanov, I.V. (1974) Žurnal fiziceskoj chimii 12, 3009.

    Google Scholar 

  • Butyagin, P.J. (1984) Disordering of structure and mechanochemical reactions in solids. Uspechi chimiji 53, 1769–1789 (in Russian).

    CAS  Google Scholar 

  • Butyagin, P.J. and Yuščenko, V.S. (1987) Kinetika i kataliz 27, 1035–1039.

    Google Scholar 

  • Campbell, S.J., Kaczmarek, W.A. and Wang, G.M. (1995) Mechanochemical transformation of haematite to magnetite. Nanostructured Materials 6, 735–738.

    Article  Google Scholar 

  • Cao, G., Garcia, M.E., Alcala, M., Burgess, L.F. and Mallouk, T.E. (1992) Chiral molecular recognition in intercalated zirconium phosphate. Journal of American Chemical Society 114, 7574–7575.

    Article  CAS  Google Scholar 

  • Carter, R.E. (1991) Journal of Chemical Physics 34, 2010.

    Article  Google Scholar 

  • Cech, R.E. and Tiemann, T.S. (1969) The hydrogen reduction of copper, nickel, cobalt and iron sulfides and the formation of filamentary metals. Transactions of Metalurgical Society of AIME 245, 1727–1733.

    CAS  Google Scholar 

  • Cech, R.E. (1974) Journal of Metals 26, 32–38.

    CAS  Google Scholar 

  • Chen, Y., Marsh, M., Williams, J.S. and Ninham, B. (1996) Production of rutile from ilmenite by room temperature ball-milling-induced sulphurization reaction. Journal of Alloys and Compounds 245, 54–58.

    Article  CAS  Google Scholar 

  • Chunpeng, L., Zhonghua, L. and Zuze, Z. (1988) Reduction kinetics of stibnite with hydrogen and recovery of metallic antimony/lead by evaporation. In: F. Chongyne, L. Jianehun, L. Songren (Eds.) Proceedings of the Ist International Conference on the Metalurgy and Materials Sciences of Tungsten, Titanium, Rare Earth and Antimony “W-Ti-Re-Sb 88“, Vol. 1. Pergamon Press, Oxford, pp. 539–544.

    Google Scholar 

  • Courtney, I.A. and Dahn, J.R. (1997) Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of Electrochemical Society 144, 2045–2052.

    Article  CAS  Google Scholar 

  • Čižikov, D.M. (1976) Metallurgy of Non-ferrous Metals. Nauka, Moscow (in Russian).

    Google Scholar 

  • Danielian, N.G., Janazian, S.K. and Melnichenko, V.V. (1991) X-ray investigation of metal reduction by mechanical alloying and solid state reaction. Modern Physics Letters 5, 1355–1359.

    Article  Google Scholar 

  • Dutta, J. and Hofman, H., http:/www.mxsg3.epfl.ch/ltp/Cours/Nanomat/Nanomat/pdf

  • El-Eskandarany, M.S., El-Bahnasawy, H.N., Ahmed, H.A. and Eissa, N.A. (2001) Mechanical solid-state reduction of haematite with magnesium. Journal of Alloys and Compounds 314, 286–295.

    Article  Google Scholar 

  • Frost, B.R. (1991) Stability of oxide minerals in metamorphic rocks. Reviews in Mineralogy and Geochemistry 25, 469–488.

    CAS  Google Scholar 

  • Gaffet, E. and Harmelin, M. (1990) Crystal-amorphous phase transition induced by ball-milling in silicon. Journal of Less-Common Metals 157, 201–222.

    Article  CAS  Google Scholar 

  • Gaffet, E., Bernard, F., Niepce, J.C., Charlot, F., Gras, C., LeCaër, G., Guichard, J.L., Delcroix, P., Mocellin, A. and Tillement, O. (1999) Some recent developments in mechanical activation and mechanosynthesis. Journal of Materials Chemistry 9, 305–314.

    Article  CAS  Google Scholar 

  • Gaffet, E. and Bernard, F. (2002) Mechanically activated powder metallurgy processing: A versatile way towards nanomaterials synthesis. Annales de Chimie Sciences des Materiaux 27, 47–59.

    Article  CAS  Google Scholar 

  • Gaffet, E. and LeCaër, G. (2004) Mechanical processing for nanomaterials. In: H.S. Nalwa (Ed.) Encyclopedia of Nanoscience and Nanotechnology, Vol. 5. American Scientific Publishers, pp. 91–129.

    Google Scholar 

  • Gaines, R.V., Skinner, H.C.W., Ford, E.E., Mason, B., Rosenzweig, A., King, W.T. and Gowty, E. (1997) Dana’s New Mineralogy. Willey, New York.

    Google Scholar 

  • Gillan, E.G. and Kaner, R.B. (1996) Synthesis of refractory ceramics via rapid metal thesis between solid-state precursors. Chemistry of Materials 8, 333–343.

    Article  CAS  Google Scholar 

  • Godočíková, E., Bastl, Z., Spirovová, I. and Baláž, P. (2004a) A study of mechanochemical reduction of lead sulphide by elemental iron on the surface studied by XPS. Journal of Materials Science 39, 3025–3029.

    Article  Google Scholar 

  • Godočíková, E., Baláž, P., Boldižárová, E., Škorvánek, I., Kováč, J. and Choi, W.S. (2004b) Mechanochemical reduction of lead sulphide by elemental iron. Journal of Materials Science 39, 5353–5355.

    Article  Google Scholar 

  • Godočíková, E., Baláž, P., Takacs, L., Šepelák, V., Škorvánek, I. and Gock, E. (2007) Sb/FeS nanocomposite prepared by mechanochemical reduction. Kovové materiály 45, 99–104.

    Google Scholar 

  • Godočíková, E., Takacs, L., Baláž, P., Kováč, J., Šatka, A. and Briančin, J. (2008) Mechanochemical reduction of antimony sulphide Sb2S3 with magnesium in a planetary mill. Reviews in Advanced Materials Science 18, 212–215.

    Google Scholar 

  • Goya, G.F., Rechenberg, H.R. and Jiang, J.Z. (1998) Structural and magnetic properties of ball milled copper ferrite. Journal of Applied Physics 84, 1101–1108.

    Article  CAS  Google Scholar 

  • Habashi, F. (1969) Extractive Metallurgy, Vol. 1, General Principles. Gordon and Breach, New York.

    Google Scholar 

  • Habashi, F. (1986) Extractive Metallurgy, Vol. 3, Pyrometallurgy. Gordon and Breach, New York.

    Google Scholar 

  • Habashi, F. (1993) A History of Metallurgy. Métallurgie Extractive Québec.

    Google Scholar 

  • Hedvall, J.A. (1938) Reaktionsfähigkeit fester Stoffe. Verlag Barth, Leipzig.

    Google Scholar 

  • Henn, J.J. and Barclay, J.A. (1995) Journal of Applied Chemistry and Biotechnology 25, 561–568.

    Google Scholar 

  • Jermakov, A.E., Barinov, V.A. and Jurcikov, E.E. (1982) Fizika Metallov i Metallovedenije 54, 90–96 (in Russian).

    Google Scholar 

  • Jiang, J.Z., Larsen, R.K., Lin, R., Morup, S., Chorkendorff, I., Nielsen, K. and West, K. (1998) Mechanochemical synthesis of Fe-S materials. Journal of Solid State Chemistry 138, 114–125.

    Article  CAS  Google Scholar 

  • Jovanovic, S., Sinadinovic, D. and Durkovic, B. (1986a) Reduction of non-ferrous sulfides by hydrogen (I). Rud Geolog I Metal 37, 594–597 (in Serbian).

    Google Scholar 

  • Jovanovic, S., Durkovic, B. and Sinadinovic, D. (1986b) Reduction of non-ferrous sulfides by hydrogen (II). Rud Geolog I Metal 37, 1247–1251 (in Serbian).

    Google Scholar 

  • Kaczmarek, W.A. and Ninham, B.W. (1994) Preaparation of Fe3O4 and γ -Fe2O3 powders by magnetomechanical activation of hematite. IEEE Transactions on Magnetics 30, 732–733.

    Article  Google Scholar 

  • Karch, J., Birringer, R. and Gleiter, H. (1987) Ceramics ductile at low temperature. Nature 330, 556–558.

    Article  CAS  Google Scholar 

  • Kharitidi, G.P., Skopov, G.V., Chudjakov, I.F. and Veksler, S.F. (1981) Reduction of chalcopyrite by solid carbon in the presence of calcium oxide. Izvestija AN SSSR, Metalurgija 6, 21–27 (in Russian).

    Google Scholar 

  • Kharitidi, G.P., Skopov, G.V., Lisina, N.N. and Ovchinnikova, L.A. (1983) Reduction and sublimation of lead sulfide in the lead-sulfide-calcium oxide-carbon system. Žurnal prikladnoj chimiji 56, 729–734 (in Russian).

    CAS  Google Scholar 

  • Koch, C.C. (1991) Mechanical milling and alloying. Materials Sciences and Technology 15, 93–198.

    Google Scholar 

  • Kosmac, T. and Courtney, T.H. (1992) Milling and mechanical alloying of inorganic nonmetallics. Journal of Materials Research 7, 1519–1525.

    Article  CAS  Google Scholar 

  • Lin, J.J., Nadiv, S. and Grodzian, D.J.M. (1975) Changes in the state of solids and mechanochemical reactions in prolonged comminution process. Minerals Science and Engineering 7, 313–336.

    CAS  Google Scholar 

  • Ma, E., Pagan, J., Cranford, G. and Atzmon, M. (1993) Evidence of self-sustained MoSi2 formation during high-energy ball milling of elemental powders. Journal of Materials Research 25, 1836–1844.

    Article  Google Scholar 

  • Mankhand, T.R., Singh, G. and Prasad, P.M. (1978) Transactions of Indian Institute of Metals 31, 194–199.

    CAS  Google Scholar 

  • Marfunin, A.S. and Mkrtčjan, A.R. (1967) Mössbauer spectra of Fe57 in sulphide minerals. Geochimija 10, 1094–1103 (in Russian).

    Google Scholar 

  • Matteazzi, P. and LeCaër, G. (1991) Reduction of haematite with carbon by room temperature ball milling. Materials Science and Engineering A 149, 135–142.

    Article  Google Scholar 

  • Matteazzi, P. and LeCaër, G. (1992a) Synthesis of nanocrystalline alumina-metal composites by room-temperature ball-milling of metal oxides and aluminium. Journal of American Ceramic Society 75, 2749–2755.

    Article  CAS  Google Scholar 

  • Matteazzi, P. and LeCaër, G. (1992b) Mechanically activated room temperature reduction of sulphides. Materials Science and Engineering A 156A, 229–237.

    Article  Google Scholar 

  • Matteazzi, P., Basset, D., Miani, F. and LeCäer, G. (1993) Mechanosynthesis of nanophase materials. Nanostructured Materials 2, 217–229.

    Article  CAS  Google Scholar 

  • McCormick, P.G. (1995) Application of mechanical alloying to chemical refining. Materials Transactions JIM 36, 161–169.

    CAS  Google Scholar 

  • McCormick, P.G., Tsuzuki, T., Robinson, J.S. and Ding, J. (2001) Nanopowders synthesized by mechanochemical processing. Advanced Materials 13, 1008–1010.

    Article  CAS  Google Scholar 

  • Menzel, M., Šepelák, V. and Becker, K.D. (2001) Mechanochemical reduction of nickel ferrite. Solid State Ionics 141–142, 663–669.

    Article  Google Scholar 

  • Mills, K.C. (1974) Thermodynamic Data for Inorganic Sufides, Selenides and Tellurides. Butterworth, London.

    Google Scholar 

  • Molčanov, V.I. and Jusupov, T.S. (1981) Physical and Chemical Properties of Fine Ground Minerals. Nedra, Moscow.

    Google Scholar 

  • Morimoto, M., Koto, K. and Shimazaki, Y. (1969) Anilite, Cu7S4, a new mineral. American Mineralogist 54, 1256–1268.

    Google Scholar 

  • Mrowec, S. (1988) On the defect structure and diffusion kinetics in transition metal sulfides and oxides. Reactivity of Solids 5, 241–268.

    Article  Google Scholar 

  • Mukopadhyay, D.K., Prisbrey, K.A., Suryanarayana, C. and Froyes, F.H. (1996) Ball-milling, a novel extraction process for production of W from WO3 using magnesium as reductant. In: A. Bose, R.J. Dowding (Eds.) Tungsten and Refractory Metals 3. Metal Powder Industries Federation, New York, pp. 239–346.

    Google Scholar 

  • Mulas, G., Monagheddu, M., Doppiu, S., Cocco, G., Maglia. F. and Anselmi Tamburini, U. (2001) Metal-metal oxides prepared by MSR and SHS techniques. Solid State Ionics 141–142, 649–656.

    Article  Google Scholar 

  • Nakatani, Y., Sakai, M., Nakatani, S. and Matsuoka, M. (1983) Mechanochemical effect of dry-grinding on the transformation phenomenon from γ -Fe2O3 to α -Fe2O3. Journal of Materials Science Letters 2, 129–131.

    Article  CAS  Google Scholar 

  • Nasu, T., Tokumitsu, K., Miazawa, K., Greer, A.L. and Suzuki, K. (1999) Solid state reduction of iron oxide by ball milling. Materials Science Forum 312–314, 185–190.

    Google Scholar 

  • Nazar, L.F., Zhang, Z. and Zinkweg, D.J. (1992) Insertion of PPV in layered MoO3. Journal of American Chemical Society 114, 6239–6240.

    Article  CAS  Google Scholar 

  • Niihara, K. (1991) New design concept of structural ceramic: ceramic nanocomposites. Journal of Ceramic Society of Japan 99, 974–982.

    CAS  Google Scholar 

  • Onajev, I.V. and Spitčenko, V.S. (1988) Reduction of Sulfides. Nauka, Alma-Ata (in Russian).

    Google Scholar 

  • O’Neill, H.S.C. and Navrotsky, A. (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. American Mineralogist 68, 181–194.

    CAS  Google Scholar 

  • O’Neill, H.S.C. and Navrotsky, A. (1984) Cation-distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist 69, 733–753.

    CAS  Google Scholar 

  • Pardavi-Horvath, M. and Takacs, L. (1992) Iron-alumina composites prepared by ball milling. IEEE Transactions on Magnetics 28, 3186–3188.

    Article  CAS  Google Scholar 

  • Parson, A., Petrashov, V.T. and Sosnin, I.A. (2000) Anomalies in quantum and classical magnetoresistance of semi-metallic nanowires. Physica B: Condensed Matter 284–288, 1744–1745.

    Article  Google Scholar 

  • Patel, P., Roy, S., Kim, Il-Seok and Kumta, P.M. (2004) Synthesis and characterization of tin and antimony based composites derived by mechanochemical in situ reduction of oxides. Materials Science and Engineering B 111, 237–241.

    Google Scholar 

  • Pavlyuchin, J.T., Medikov, J.J., Avvakumov, E.G. and Boldyrev, V.V. (1981) Defect formation by mechanical activation studied by Mössbauer spectroscopy. ISO AN ZSSSR, seria chimiceskich nauk 4, 11–16 (in Russian).

    Google Scholar 

  • Pavlyuchin, I.T., Medikov, I.I. and Boldyrev, V.V. (1982) Cation re-distribution in spinel ferrites as a consequence of mechanical activation. Doklady akademii nauk SSSR 266, 1420–1422 (in Russian).

    Google Scholar 

  • Pavlyuchin, J.T., Medikov, J.J. and Boldyrev, V.V. (1983) Magnetic and chemical properties of mechanically activated zinc and nickel ferrites. Materials Research Bulletin 18, 1317–1327.

    Article  Google Scholar 

  • Pavlyuchin, J.T., Medikov, J.J. and Boldyrev, V.V. (1984) On the consequences of mechanical activation of zinc and nickel ferrites. Journal of Solid State Chemistry 53, 155–160.

    Article  Google Scholar 

  • Pavlyuchin, J.T., Medikov, J.J and Boldyrev, V.V. (1988) Mechanical activation of close-packed inorganic crystals. Review of Solid State Sciences 2, 603–621.

    Google Scholar 

  • Prasad, P.M. and Mankhand, T.R. (1983) Lime enhanced reduction of metal sulphides. In: H.Y. Sohn, D.B. George, A.D. Zunkel (Eds.) Proceedings of International Sulphide Smelting Symposium. The Metallurgical Society of AIME, San Francisco, pp. 371–392.

    Google Scholar 

  • Saito, F., Zhang, Q. and Kano, J. (2004) Mechanochemical approach for preparing nanostructural materials. Journal of Materials Science 39 (2004) 5051.

    Article  CAS  Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1989a) Reduction of metal oxides by mechanical alloying. Applied Physics Letters 55, 45–46.

    Article  CAS  Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1989b) Combustion synthesis by mechanical alloying. Scripta Metallurgica 23, 835–838.

    Article  CAS  Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1990) Displacement reactions during mechanical alloying. Metallurgical Transactions A 21A, 2789–2794.

    Article  CAS  Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1991) Anomalous combustion effects during mechanical alloying. Metallurgical Transactions A 22A, 3019–3023.

    Article  CAS  Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1992a) The direct synthesis of metals and alloys by mechanical alloying. Materials Science Forum 88–90, 779–786.

    Google Scholar 

  • Schaffer, G.B. and McCormick, P.G. (1992b) Mechanical alloying. Materials Forum 16, 91–97.

    CAS  Google Scholar 

  • Schrader, R. and Hoffman, B. (1973) Änderung der Reaktionsfähigkeit von Festkörpern durch vorhergehende mechanische Bearbeitung. In: V.V. Boldyrev, K. Meyer (Eds.) Festkörperchemie. Verlag Grundstoffindustrie, Leipzig, pp. 522–543.

    Google Scholar 

  • Senna, M. and Kuno, H. (1973) Effect of preliminary pressing on isothermal transformation of maghemite to hematite. Journal of American Ceramic Society 56, 492–493.

    Article  CAS  Google Scholar 

  • Shi, Y. and Ding, J. (2001) Journal of Applied Physics 90, 4078.

    Article  CAS  Google Scholar 

  • Shuey, R.T. (1975) Semiconducting Ore Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Sorescu, M. (1998) Phase transformations induced in magnetite by high energy milling. Journal of Materials Science Letters 17, 1059–1061.

    Article  CAS  Google Scholar 

  • Streleckij, A.N., Butyagin, P.J. and Leonov, A.V. (1996) Koloidnyj žurnal 58–62, 248–253 (in Russian).

    Google Scholar 

  • Suryanarayana, C. (2001) Mechanical alloying and mixing. Progress in Materials Science 46, 1–184.

    Article  CAS  Google Scholar 

  • Szczygiel, Z., Lara, C., Escobedo, S. and Mendoza, O. (1998) The direct reduction of sulfide minerals for the recovery of precious metals. Journal of Metals 50, 55–59.

    CAS  Google Scholar 

  • Šepelák, V., Steinicke, U., Uecker, D.C., Trettin, R., Wissmann, S. and Becker, K.D. (1997) High-temperature reactivity of mechanosynthesized zinc-ferrite. Solid State Ionics 101–103, 1343–1349.

    Article  Google Scholar 

  • Šepelák, V. and Becker, K.D. (2000) Mösbauer studies in the mechanochemistry of spinel ferrites. Journal of Materials Synthesis and Processing 8, 155–166.

    Article  Google Scholar 

  • Šepelák, V., Menzel, M., Becker, K.D. and Krumeich, F. (2002) Mechanochemical reduction of magnesium ferrite. Journal of Physical Chemistry B 106, 6672–6678.

    Article  CAS  Google Scholar 

  • Šepelák, V., Bergmann, I., Kipp, S. and Becker, K.D. (2005) Chemie mit der Hammer-Mechanochemie. Zeitschrift für Anorganische und Allgemeine Chemie 631, 993–1003.

    Article  CAS  Google Scholar 

  • Takacs, L. (1993) Metal-metal oxide systems for nanocomposite formation by reaction milling. Nanostructured Materials 2, 241–249.

    Article  CAS  Google Scholar 

  • Takacs, L. and Pardavi-Horvath, M. (1994) Magnetic properties of nanocomposites prepared by mechanical alloying. In: R.D. Shull, J.M. Sanchez (Eds.) Nanophases and Nanocrystalline Structures. TMS, Warendale, pp. 135–144.

    Google Scholar 

  • Takacs, L. (1996a) Ball milling-induced combustion in powder mixtures containing titanium, zirconium or hafnium. Journal of Solid State Chemistry 125, 75–84.

    Article  CAS  Google Scholar 

  • Takacs, L. (1996b) Combustive mechanochemical reactions with titanium, zirconium and hafnium. Materials Science Forum 225–227, 553–558.

    Article  Google Scholar 

  • Takacs, L. (1996c) Nanocrystalline materials by mechanical alloying and their magnetic properties. In: C. Suryanarayana, J. Singh, F.H. Froes (Eds.) Processing and Properties of Nanocrystalline Materials. TMS, Warrendale, PA, pp. 453–464.

    Google Scholar 

  • Takacs, L. (2002) Self-sustaining reactions induced by ball milling. Progress in Materials Science 47, 355–461.

    Article  CAS  Google Scholar 

  • Takacs, L., Torosyan, A.R. and Baláž, P. (2006) Ball milling induced reduction of MoS2 with Al. Journal of Materials Science 7033–7039.

    Google Scholar 

  • Tamman, G. (1932) Lehrbuch der Metallkunde. Verlag Barth, Leipzig.

    Google Scholar 

  • Terry, B.S., Azubike, D.C. and Chrysanthou, A. (1994) Carbothermic reduction as a potential means for the direct reduction of Fe-WC and FeTaC, NbC metal-matrix composites. Journal of Materials Science 29, 4300–4305.

    Article  CAS  Google Scholar 

  • Thiessen, P., Heinicke, G. and Schober, E. (1970) Zur tribochemischen Umsetzung von Gold und CO2 mit Hilfe radioaktiver Markierung. Zeitschrift für Anorganische und Allgemeine Chemie 377, 20–28.

    Article  CAS  Google Scholar 

  • Tkáčová, K. (1989) Mechanical Activation of Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Torma, A.E. and Inal, O.T. (1979) Reduction of stibnite by hydrogen. Journal of Less-Common Metals 64, 107–114.

    Article  CAS  Google Scholar 

  • Torosyan, A.R., Tuck, J.R., Korsunskij, A.M. and Bagdasaryan, S.A. (2002) Metastable, mechanically alloyed and nanocrystalline materials. Materials Science Forum 386–388, 251–256.

    Google Scholar 

  • Torosyan, A.R. and Takacs, L. (2004) Quantitative comparison of the efficiency of mechanochemical reactors. Journal of Materials Science 39, 5491–5498.

    Article  CAS  Google Scholar 

  • Treece, R.E., Gillan, E.G. and Kanner, R.B. (1995) Materials synthesis via solid-state metathesis reaction. Comments on Inorganic Chemistry 16, 313–337.

    Article  CAS  Google Scholar 

  • Tschakarov, C.G., Gospodinov, G.G. and Bontschev, Z. (1982) Über den Mechanismus der mechanochemischen Synthese. Journal of Solid State Chemistry 41, 244–252.

    Article  Google Scholar 

  • Urakajev, F.Ch., Takacs, L., Soika, V., Schevchenko, V.S. and Boldyrev, V.V. (2001) Mechanism of formation of “hot spots” in mechanochemical reactions of metal and sulfur. Russian Journal of Physical Chemistry 75, 1997–2001.

    Google Scholar 

  • Urakajev, F.Ch., Ketegenov, T.A., Petrshin, E.J., Savintsev, Y.P., Tjumentseva, O.A., Chupakhin, A.P., Schevchenko, V.S., Jusupov, T.S. and Boldyrev, V.V. (2003) Complex investigation into the abrasion-reaction modification of quartz particle surface by amorphous iron compounds. Journal of Mining Science 39, 304–314.

    Article  Google Scholar 

  • Urakajev, F.Ch., Schevchenko, V.S. and Ketegenov, T.A. (2004) Synthesis of chalcogenide nanocomposites. Journal of Physical Chemistry 78, 551–554 (in Russian).

    Google Scholar 

  • Varghese, V., Sharma, A. and Chattopadhyay, K. (2001) Reaction ball milling of systems involving ionic bonds. Materials Science and Engineering A304–306, 434–437.

    Google Scholar 

  • Varghese, V., Chattopadhyay, K. and Narayanasamy, A. (2004) Factors influencing the kinetics of electrochemical reactions in milling. Journal of Materials Science 39, 5161–5167.

    Article  CAS  Google Scholar 

  • Vanjukov, A.V., Isakova, R.A. and Bystrov, V.P. (1978) Thermal Decomposition of Metal Sulfides. Nauka, Alma-Ata (in Russian).

    Google Scholar 

  • Varnek, V.A., Strugova, L.I. and Avvakumov, E.G. (1974) Mechanical activation of solid-state reactions. 5. Study of solid-state reduction of SnO2 Mössbauer spectroscopy. Izvestija SO AN SSSR, seria chimiceskich nauk 2, 26–29 (in Russian).

    Google Scholar 

  • Vassilion, J.K., Ziebarth, R.P. and Disalvo, F. (1990) Chemistry of Materials 2, 738–746.

    Article  Google Scholar 

  • Vaughan, D.J. and Craig, J.R. (1978) Minerals Chemistry of Metal Sulfides. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vaughan, D.J. and Lennie, A.R. (1991) The iron sulphide minerals: their chemistry and role in nature. Scientific Progress Edinburgh 75, 371–388.

    CAS  Google Scholar 

  • Weeber, A.W. and Bakker, H. (1998) Amorphization by ball milling. A review. Physica B: Condensed Matter 153, 93–135.

    Article  Google Scholar 

  • Weisser, O. and Landa, S. (1972) Sulphide Catalysts. Their Properties and Applications. Academia, Prague.

    Google Scholar 

  • Welham, N.J. (1996) A parametric study of the mechanically activated carbothermic reduction of ilmenite. Minerals Engineering 9, 1189–1200.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1997) Enhancement of the Becher process by ball milling. Proceedings of the Australasian Institute of Mining and Metallurgy 302, 61–61.

    Google Scholar 

  • Welham, N.J. (1998a) Mechanical activation of the solid-state reaction between Al and TiO2. Materials Science Engineering A 255A, 81–89.

    Article  Google Scholar 

  • Welham, N.J. (1998b) Mechanical activation of the formation of an alumina-titanium aluminide composite. Intermetallics 6, 363–368.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1998c) Mechanochemical reduction of FeTiO3 by Si. Journal of Alloys and Compounds 274, 303–307.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1998d) Mechanochemical reaction between sulfur and ilmenite. Australian Journal of Chemistry 51, 947–953.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1998e) Mechanochemical reaction between ilmenite (FeTiO3) and aluminium. Journal of Alloys and Compounds 270, 228–236.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1998f) Mechanically induced reduction of ilmenite (FeTiO3) and rutile (TiO2) by magnesium. Journal of Alloys and Compounds 274, 260–265.

    Article  CAS  Google Scholar 

  • Welham, N.J. (1999) Room temperature reduction of scheelite (CaWO4). Journal of Materials Research 14, 619–627.

    Article  CAS  Google Scholar 

  • Welham, N.J. (2000) Mechanical enhancement of the carbothermic formation of TiB2. Metallurgical Transactions A 31A, 283–289.

    CAS  Google Scholar 

  • Welham, N.J. (2002) Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing 67, 187–198.

    Article  CAS  Google Scholar 

  • Williamson, G.K. and Hall, W.H. (1953) X-ray broadening from filled aluminium and volfram. Acta Metallurgica 1, 22–31.

    Article  CAS  Google Scholar 

  • Yang, H. and McCormick, P.G. (1993) Combustion reaction of zinc oxide with magnesium during milling. Journal of Solid State Chemistry 107, 258–263.

    Article  CAS  Google Scholar 

  • Yang, H. and McCormick, P.G. (1994) Mechanochemical reduction of V2O5. Journal of Solid State Chemistry 110, 136–141.

    Article  CAS  Google Scholar 

  • Ye, L.L., Liu, Z.G., Huang, J.Y. and Quan, M.X. (1995) Combustion reaction of powder mixtures of composition Ni20Ti50C30 during mechanical alloying. Materials Letters 25, 117–121.

    Article  CAS  Google Scholar 

  • Zhang, Q. and Saito, F. (1998) Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment. Hydrometallurgy 47, 231–241.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wang, J., Saito, F., Okura, T. and Nakamura, I. (2001) Chemical Letters 160, 700.

    Google Scholar 

  • Zhang, D.L. (2004) Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science 49, 537–560.

    Article  CAS  Google Scholar 

  • Zviadadze, G.I., Turgenev, I.S., Kabisov, I.Ch. and Vasiljeva, O.J. (1985) Izvestija VUZ, Cvetnaja Metalurgija 1, 60–63 (in Russian).

    Google Scholar 

  • Zviadadze, G.I., Turgenev, I.S., Kabisov, I.Ch. and Vasiljeva, O.J. (1986) Kinetics of lead sulfide reduction by hydrogen. Izvestija VUZ, Cvetnaja Metalurgija 2, 42–45 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baláž, P. (2008). From Minerals to Nanoparticles. In: Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74855-7_4

Download citation

Publish with us

Policies and ethics