Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W. (1982) Physical Chemistry of Surfaces, 4th Edition. Wiley, New York, 664p.

    Google Scholar 

  • Agricola, G. (1546) De Natura Fossilicum. Latin Edition.

    Google Scholar 

  • Agricola, G. (1556) De Re Metallica. Latin Edition.

    Google Scholar 

  • Anonymous (2002) Report of the Nanogeoscience Workshop, Berkeley, California, pp. 1–35.

    Google Scholar 

  • Anonymous (2004) The Royal Society and The Royal Academy of Engineering, Nanoscience and Nanotechnologies. London, pp. 7–23.

    Google Scholar 

  • Ascencio, J.A., Gutierrez-Wing, C., Espinosa-Pesqueira, M.E., Marin, M., Tehuacanero, S., Zorilla, C. and José-Yacamán, M. (1998) Structure determination of small particles by HRTEM imaging: Theory and experiment. Surface Science 396, 349–369.

    CAS  Google Scholar 

  • Ascencio, J.A., Lin, H.B., Pal, U., Medina, A. and Wang, Z.L. (2006) Transmission electron microscopy and theoretical analysis of AuCu nanoparticles. Atomic distribution behaviour. Microscopy Research and Technique 69, 522–530.

    CAS  Google Scholar 

  • Ashly, M.F. and Jones, D.R.H. (1980) Engineering Materials: An Introduction to their Properties and Applications. Pergamon Press, Oxford.

    Google Scholar 

  • Avrami, M. (1941) Kinetics of phase change. III Granulation, phase change, and microstructure. Journal of Chemical Physics 9, 177–184.

    CAS  Google Scholar 

  • Avvakumov, E.G., Boldyrev, V.V. and Kosobudskij, I.D. (1972) Mechanochemical activation of solid state reactions. 1. About reaction of pyrite with iron. Izvestija Sibirskovo otdelenija AN SSSR, serija chimiceskich nauk 4, 45–50.

    Google Scholar 

  • Avvakumov, E.G. and Strugova, L.I. (1974) Mechanical activation of solid state reactions. 6. Application of non-diffusion kinetics in mechanochemical reaction in solid mixtures. Izvestija Sibirskovo otdelenija AN SSSR, serija chimireskich nauk 6, 42–45.

    Google Scholar 

  • Avvakumov, E.G. (1986) Mechanical Methods of the Activation of Chemical Processes. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Avvakumov, E.G. and Kosova, N.V. (1991) Fast propagating solid-state mechanochemical reactions. Sibirskij Chimičeskij Zhurnal 5, 62–66.

    Google Scholar 

  • Avvakumov, E.G., Senna, M. and Kosova, N. (2001) Soft Mechanochemical Synthesis. A Basis for New Chemical Technologies. Kluwer Academic Publishers, Boston, p. 201.

    Google Scholar 

  • Bacon, F. (1658) In: Opuscula Varia Posthuma by Rawley (1658). See Shaw, P. The Philosophical Works of the Hon. R. Boyle. Ist Edition, Vol. 1, 1733, p. 149.

    Google Scholar 

  • Bai, H.Y., Luo, J.L., Jin, D. and Sun, J.R. (1996) Particle size and interfacial effect on the specific heat of nanocrystalline Fe. Journal of Applied Physics 79, 361–364.

    CAS  Google Scholar 

  • Baláž, P., Bálintová, M., Bastl, Z., Briančin, J. and Šepelák, V. (1997) Characterization and reactivity of zinc sulphide prepared by mechanochemical synthesis. Solid State Ionics 101–103, 45–51.

    Google Scholar 

  • Baláž, P., Ohtani, T., Bastl, Z. and Boldižárová, E. (1999) Properties and reactivity of mechanochemically synthesized tin sulfides. Journal of Solid State Chemistry 144, 1–7.

    Google Scholar 

  • Baláž, P. (2000) Extractive Metallurgy of Activated Minerals. Elsevier, Amsterdam, 290p.

    Google Scholar 

  • Baláž, P. (2001) Mechanochemistry in extractive metallurgy: The modern science with old routes. Acta Metallurgica Slovaca, Special Issue 4, 23–28.

    Google Scholar 

  • Baláž, P., Takacs, L., Ohtani, T., Mack, D.E., Boldižárová, E. and Achimovičová, M. (2002) Properties of a new nanosized tin sulphide phase obtained by mechanochemical route. Journal of Alloys and Compounds 337, 76–82.

    Google Scholar 

  • Baláž, P., Boldižárová, E., Godočíková, E. and Briančin, J. (2003) Mechanochemical route for sulphide nanoparticles preparation. Materials Letters 57, 1585–1589.

    Google Scholar 

  • Baláž, P., Dutková, E., Ficeriová, J., Pourghahramani, P. and Achimovičová, M. (2008) Mechanochemistry of sulfides: from minerals to nanocrystalline semiconductors. In: F. Delogu and G. Mulas (Eds.) Experimental and Theoretical Approaches to Modern Mechanochemistry. Research Signpost, Trivandrum, Kerala, India.

    Google Scholar 

  • Balamurugan, B., Mehta, B.R. and Sharma, K. (1999) Fabrication and characterization of CdxZn1-xS nanoparticles. Nano-Structured Materials 12, 151–154.

    Google Scholar 

  • Banfield, J.F. and Navrotsky, A. (Eds.) (2001) Nanoparticles and the Environment, Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, Blacksburg, Virginia, Vol. 44, pp. 1–349.

    Google Scholar 

  • Banfield, J.F. and Zhang, H. (2001) Nanoparticles and the Environment. In: J.F. Banfield and A. Navrotsky (Eds.) Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, Blacksburg, Virginia, Vol. 44, pp. 1–58.

    Google Scholar 

  • Baramboin, N.K. (1970) Mechanochemistry of Macromolecular Substances. Khimiya, Moscow, 357p.

    Google Scholar 

  • Baraton, M.I. and El-Shall, M.S. (1995) Synthesis and characterization of nanoscale metal oxides and carbides. Nanostructured Materials 6, 301–304.

    CAS  Google Scholar 

  • Barret, P. (1978) Kinetics of Heterogeneous Reactions in Solid-Gas Systems. Academia, Prague (in Czech).

    Google Scholar 

  • Berlin, A.A. (1958) Mechanochimičeskoje prevraščenija i sintez polimerov. Uspechi chimiji 27, 94–112.

    CAS  Google Scholar 

  • Bertenev, G.M. and Razumovskaya I.V. (1969) Phonone conception of solid fracture. Fiziko-chimičeskaja Mechanika Materialov 5, 60–64.

    Google Scholar 

  • Bertran, H. and Zhu, J.G. (1992) Fundamental magnetization processes in thin-film recording media. Solid State Physics 46, 271–371.

    Google Scholar 

  • Beyer, M.K. and Clausen-Schaumann, H. (2005) Mechanochemistry: The mechanical activation of covalent bonds. Chemical Reviews 105, 2921–2948.

    CAS  Google Scholar 

  • Birringer, R., Herr, U. and Gleiter, G. (1986) Nanocrystalline materials – a first report. Grain boundary structure and related phenomena. Supplement of Transactions of Japan Institute of Metals 27, 43–52.

    Google Scholar 

  • Blugel, S. (1992) Two-dimensional ferromagnetism of 3d, 4d, and 5d transition metal monolayers on mole metal (001) substrates. Physical Review Letters 68, 851–854.

    Google Scholar 

  • Boldyrev, V.V. (1972) About kinetic factors which influence the mechanochemical processes in inorganic systems. Kinetika i Kataliz 13, 1411–1412 (in Russian).

    CAS  Google Scholar 

  • Boldyrev, V.V. (1986) Mechanochemistry of inorganic solids. Proceedings of Indian Natural Sciences Academy 52, 400–417.

    CAS  Google Scholar 

  • Boldyrev, V.V., Lyakhov, N., Pavlyuchin, Y., Boldyreva, E., Ivanov, E. and Avvakumov, E.G. (1990) Achievements and prospects in mechanochemistry. Russian Chemical Reviews 14, 105–161.

    Google Scholar 

  • Boldyrev, V.V. (1983) Mechanochemistry and mechanical activation of solids. Solid State Ionics 63–65, 537–543.

    Google Scholar 

  • Boldyrev, V.V. and Tkáčová, K. (2000) Mechanochemistry of solids: past, present and prospects. Journal of Materials Synthesis and Processing 8, 121–132.

    CAS  Google Scholar 

  • Boldyrev, V.V. (2002) About history of mechanochemistry development in Siberia. Chemistry in Sustainable Development 10, 3–12.

    CAS  Google Scholar 

  • Boldyrev, V.V. (2006) Mechanochemistry and mechanical activation of solids. Russian Chemical Reviews 75, 177–189.

    CAS  Google Scholar 

  • Bowden, F. and Yoffe, A. (1952) Initiation and Growth of Explosion in Liquids and Solids. Cambridge University Press, Cambridge, 104p.

    Google Scholar 

  • Bowden, F. and Yoffe, A. (1958) Fast Reactions in Solids. Butterworths, London, 163p.

    Google Scholar 

  • Bowden, F.P. and Tabor, D. (1958) The Friction and Lubrication of Solids. Clarendon Press, Oxford, 372p.

    Google Scholar 

  • Brannon-Peppas, L. and Blanchette, J.O. (2004) Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 56, 1649–1659.

    CAS  Google Scholar 

  • Brigger, I., Dubernet, C. and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews 54, 631–651.

    CAS  Google Scholar 

  • Brus, L.E. (1984) Electron-electron and electron-hole interaction in small semiconductor crystallites: the size dependence of the lowest excited electronic state. Journal of Chemical Physics 80, 4403–4409.

    CAS  Google Scholar 

  • Butyagin, P.Yu (1973) Primary active centers in mechanochemical reactions. Žurnal Vsesojuznogo Chimičeskogo obščestva D. Mendelejeva 18, 90–95.

    CAS  Google Scholar 

  • Butyagin, P.Yu (1984) Disordered structures and mechanochemical reactions in solids. Uspechi chimiji 53, 1769–1781.

    CAS  Google Scholar 

  • Butyagin, P.Yu (1994) Problems in mechanochemistry and prospects for its developments. Russian Chemical Reviews 63, 965–976.

    Google Scholar 

  • Campbell, S.J. and Gleiter, H. (1993) Mössbauer effect studies of nanostructured materials. In: G.J. Long and F. Grandjean (Eds.) Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Plenum Press, New York, pp. 241–303.

    Google Scholar 

  • Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentien, J.-L. and Hytch, M.J. (2003) Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310–311.

    CAS  Google Scholar 

  • Chen, S.A. and Liu, W.M. (1999) Preparation and characterization of surface coated ZnS nanoparticles. Langmuir 15, 8100–8104.

    CAS  Google Scholar 

  • Chen, J., Li, Y., Wang, Y., Yun, I. and Cao, D. (2004) Preparation and characterization of zinc sulphide nanoparticles under high-gravity environment. Materials Research Bulletin 39, 185–194.

    CAS  Google Scholar 

  • Chodakov, G.S. (1972) Physics of Milling. Nauka, Moscow (in Russian).

    Google Scholar 

  • Christian, J.E. (1965) The Theory of Transformation in Metals and Alloys. Pergamon Press, New York.

    Google Scholar 

  • Clark, G.L. and Rowan, R. (1941) Studied on lead oxides, polymorphic transition by grinding, distortion and catalytic activity in PbO. Journal of American Society 63, 1302–1305.

    CAS  Google Scholar 

  • Couvreur, P., Couarraze, G., Devissagnet, J.-P. and Puisieux, F. (1996) Nanoparticles: preparation and characterization. In: S. Benita (Ed.) Microencapsulation: Methods and Industrial Application. Marcel Dekker, New York, pp. 183–211.

    Google Scholar 

  • Dachille, F. and Roy, H. (1960) High pressure phase transformations in laboratory mechanical mixers and mortars. Nature 186, 34–71.

    CAS  Google Scholar 

  • Dachille, F. and Roy, R. (1961) Influence of displacive-shearing stresses on the kinetics of reconstructive transformations effected by pressure in the range 0-100.000 bars. In: J.H. de-Boer et al. (Eds.) Reactivity of Solids. Elsevier, New York, pp. 502–511.

    Google Scholar 

  • de Heer, W.A. (2000) Nanomagnetism. In: Z.L. Wang (Ed.) Characterization of Nanophase Materials. Wiley, Weinheim, pp. 289–314.

    Google Scholar 

  • Dhas, N.A., Zaban, A. and Gedanken, A. (1999) Surface synthesis of zinc sulfide nanoparticles on silica microspheres. Sonochemical preparation, characterization and optical properties. Chemistry of Materials 11, 806–813.

    CAS  Google Scholar 

  • Ding, J., Miao, W.F., McCormick, P.G. and Street, R. (1995) Mechanochemical synthesis of ultrafine Fe powder. Applied Physics Letters 67, 3804–3806.

    CAS  Google Scholar 

  • Ding, J., Tsuzuki, T., McCormick, P.G. and Street, R. (1996) Ultrafine Co and Ni particles prepared by mechanochemical processing. Journal of Physics D 29, 2365–2369.

    CAS  Google Scholar 

  • Dutková, E., Pourghahramani, P., Velumani, S., Baláž, P., Kostova, N.G. and Ascencio, J.A. (2008a) Mechanochemically synthesized ZnS nanoparticles. Journal of Nanoscience and Nanotechnology (submitted).

    Google Scholar 

  • Dutková, E., Baláž, P., Pourghahramani, P., Nguyen, A.V., Šepelák, V., Feldhoff, A., Kováč, J. and Šatka, A. (2008b) Mechanochemical solid state synthesis and characterization of ZnxCd1-xS nanocrystals. Solid State Ionics 179, 1242–1245.

    Google Scholar 

  • Dutta, J. and Hoffmann, H. (2003) http://www.mxsg3.epfl.ch/ltp/cours/Nanomat/pdf

  • Eckert, J., Holzer, J.C., Krill III, C.E. and Johnson, W.L. (1992) Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys. Journal of Materials Research 7, 1980–1983.

    CAS  Google Scholar 

  • Efros, Al.L. and Efros, A.L. (1982) Interband absorption of light in a semiconductor sphere. Semiconductors 16, 1209–1214.

    CAS  Google Scholar 

  • El-Shall, M.S., Slack, W., Vann, W., Kane, D. and Hanely, D. (1994) Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber. Journal of Physical Chemistry 98, 3067–3070.

    CAS  Google Scholar 

  • Enzo, S., Sampoli, M., Cocco, G., Schiffini, L., and Battezzati, L. (1989) Crystal-to glass transition in the Ni-Ti system by mechanical alloying and consequent surface area. Philosophical Magazine B 59, 169–175.

    CAS  Google Scholar 

  • Erofeev B.V. (1946) General equation of chemical kinetics and its application for solid state reactions. Doklady Akademii Nauk, USSR 52, 515–519.

    Google Scholar 

  • Fahlman, B.D. (2007) Materials Chemistry. Springer, Dordrecht, 485p.

    Google Scholar 

  • Faraday, M. (1820) The Quarterly Journal of Science, Literature and the Arts 8, 374.

    Google Scholar 

  • Faraday, M. (1827) Chemical Manipulations: Being Instructions to Students in Chemistry on the Methods of Performing Experiments of Demonstrations or of Research, with Accuracy and with Success. W. Phillips, London, p. 147.

    Google Scholar 

  • Faraday, M. (1834) Philosofical Transactions of the Royal Society, p. 55.

    Google Scholar 

  • Faraday, M. (1857) Philosophical Transactions of the Royal Society London 7, 145–181.

    Google Scholar 

  • Fecht, H.J. (1995) Nanostructure formation by mechanical attrition. Nano-Structured Materials 6, 33–42.

    CAS  Google Scholar 

  • Ferrari, M. (2005) Cancer nanotechnology: Opportunities and challenges. National Review of Cancer 5, 161–171.

    CAS  Google Scholar 

  • Fink, M. and Hofmann, U. (1932) Oxydation von Metallen unter dem Einfluss der Reibung. Zeitschrift für Metallkunde 24, 49–54.

    CAS  Google Scholar 

  • Fink, M. and Hofmann, U. (1933) Zeitschrift für anorganische und allgemeine Chemie 210, 100.

    CAS  Google Scholar 

  • Flavickij, F.M. (1902) About a new method of analytical study of the solids. Žurnal ruskovo fiziko-chemičeskovo obščestva 34, 8 (in Russian).

    Google Scholar 

  • Flavickij, F.M. (1909) Special methods and reactions in solid state chemistry. Proceedings of Mendelejev Congress, Moscow.

    Google Scholar 

  • Fox, P.G. and Soria-Ruiz, J. (1970) Fracture-induced decomposition in brittle crystalline solids. Proceedings of Royal Society A317, 79–90.

    Google Scholar 

  • Fox, P.G. (1975) Mechanically initiated chemical reactions in solids. Journal of Materials Science 10, 340–360.

    CAS  Google Scholar 

  • Freeman, A.J., Fu, C.L., Lee, J.I. and Ogushi, T. (1987) In: M. Takahashi et al. (Eds.) Physics in Magnetic Materials. World Scientific, Singapore, p. 221.

    Google Scholar 

  • Gaffet, E., Bernard, F., Niepce, J.-C., Charlot, F., Gras, Ch., LeCaër, G., Guichard, J.-L., Delcroix, P., Mocellin, A. and Tillement, O. (1999) Some recent developments in mechanical activation and mechanosynthesis. Journal of Materials Chemistry 9, 305–314.

    CAS  Google Scholar 

  • Gaffet, E. and LeCaër, G. (2004) Mechanochemical processing for nanomaterials. In: H.S. Nalwa (Ed.) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, pp. 91–129.

    Google Scholar 

  • Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y. and Torre, S.D.D.L. (1999) SiC-ZrO2(3Y)-Al2O3 nanocomposites superfast densified by plasma spark sintering. Nano-Structured Materials 11, 43–49.

    CAS  Google Scholar 

  • Gleiter, H. (1989) Nanocrystalline materials. Progress in Materials Science 33, 223–315.

    CAS  Google Scholar 

  • Gleiter, H. (1995) Nanostructured materials: state of the art and perspectives. Zeitschrift für Metallkunde 86, 78–83.

    CAS  Google Scholar 

  • Grohn, H., Paudert, R. and Bisinger, H.I. (1962) Über die mechanische Anregung einiger chemischer Reaktionen anorganischer Feststoffe. Zeitschrift für Chemie 2, 88–90.

    CAS  Google Scholar 

  • Grohn, H. and Paudert, R. (1963) Mechanochemische Reaktionen von Elementen der IV. Hauptgruppe mit einigen organischen Verbindungen. Zeitschrift für Chemie 3, 89–93.

    CAS  Google Scholar 

  • Gu, F.X., Karnik, R., Wang, A.Z., Alexis, F., Levy-Nissenbaum, E., Hong, S., Langer, R.S. and Farokhzad, O.C. (2007) Targeted nanoparticles for cancer therapy. Nanotoday 2, 14–21.

    Google Scholar 

  • Gutman, E.G. (1974) Mechanochemistry of Metals and Protection against Corrosion. Metallurgija and Protection against Corrosion, Moscow, 230p. (in Russian).

    Google Scholar 

  • Habashi, F. (1974) Principles of Extractive Metallurgy, Vol. 1 – General Principles. Gordon & Breach, New York.

    Google Scholar 

  • Hahn, H. and Averback, R.S. (2001) The production of nanocrystalline powders by magnetron sputtering. Applied Physics Letters 78, 3708–3710.

    Google Scholar 

  • Hall, E.O. (1951) The deformation and aging of mild steel III. Discussion and results. Proceedings of the Physical Society (London) B64, 747–753.

    Google Scholar 

  • Hannay, N.B. (1959) In: N.B. Hannay (Ed.) Semiconductors. Reinhold, New York.

    Google Scholar 

  • Hao, L., You, M., Mo, X., Jiang, W., Zhu, Y., Zhou, Y., Hu, Y., Lin, X. and Chen, Z. (2003) Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template. Materials Research Bulletin 38, 723–729.

    CAS  Google Scholar 

  • He, R., Qian, X., Yin, J., Xi, H., Bian, L. and Zhu, Z. (2003) Formation of monodispersed PVC-capped ZnS and CdS nanocrystals under microwave irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 220, 151–157.

    CAS  Google Scholar 

  • Heegn, H. (1989) On the connection between ultrafine grinding and mechanical activation of minerals. Aufbereitungs-Technik 30, 635–642.

    CAS  Google Scholar 

  • Heegn, H. (1990) Mechanische Aktivierung von Festkörpern. Chemische Ingenieur Technik 63, 458–470.

    Google Scholar 

  • Heegn, H., Birkeneder, F. and Kamptner, A. (2003) Mechanical activation of precursors for nanocrystalline materials. Crystal Research and Technology 38, 7–20.

    CAS  Google Scholar 

  • Hedvall, J.A. (1938) Reaktionsfähigkeit fester Stoffe. Barth-Verlag, Leipzig.

    Google Scholar 

  • Heinicke, G. and Sigrist, K. (1971) Zur Thermodynamik tribochemischer Reaktionen. Zeitschrift für Chemie 11, 226–235.

    CAS  Google Scholar 

  • Heinicke, G. (1981) Recent Advances in Tribochemistry. In: Proceedings of the International Symposium on Powder Technology 81, Kyoto, pp. 354–364.

    Google Scholar 

  • Heinicke, G. (1984) Tribochemistry. Akademie Verlag, Berlin, 495p.

    Google Scholar 

  • Hellstern, E., Fecht, H.J., Garland, C. and Johnson, W.L. (1989) Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. Journal of Applied Physics 65, 305–310.

    CAS  Google Scholar 

  • Hess, K., Steurer, E. and Fromm, E. (1942) Kolloid Zeitschrift 98, 209.

    Google Scholar 

  • Hochella, M.F., Jr. (2002) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochimica et Cosmochimica Acta 66, 735–743.

    CAS  Google Scholar 

  • Hoffmann, H., Bowen, P., Jongen, N. and Lemaire, J. (2001) Nano-composite powders, a new concept for their synthesis. Scripta Materialia 44, 2197–2201.

    Google Scholar 

  • Hoffmann, U., Horst, Ch. and Kunz, U. (2005) Reactive comminution. In: K. Sundmacher, A. Kienle, and A. Seidel-Margenstern (Eds.) Integrated Chemical Processes. Wiley, Weinheim, pp. 407–436.

    Google Scholar 

  • http://www.cheaptubesinc.com

  • http://www.ipt.arc.nasa.gov/nanotechnology.html

  • Hüttig, G.F. (1943) Zwischenzustände bei Reaktionen im Fester Zustand und ihre Bedentung für die Katalyse. In: Handbuch der Katalyse IV. Springer Verlag, Wien, pp. 318–331.

    Google Scholar 

  • Imamura, K. and Senna, M. (1982) Change in phase stability of zinc blende and wurtzite on grinding. Journal of Chemical Society, Faraday Transactions 78, 1131–1140.

    CAS  Google Scholar 

  • Imamura, K. and Senna, M. (1984) Difference between mechanochemical and thermal processes of polymorphic transformation of ZnS and PbO. Materials Research Bulletin 9, 59–65.

    Google Scholar 

  • Jellinek, F. (1988) Transition metal chalcogenides. Relationship between chemical composition, crystal structure and physical properties. Reactivity of Solids 5, 323–339.

    Google Scholar 

  • Jones, A. and Harris, A.L. (1998) New developments in angiogenesis: a major mechanism for tumor growth and target for therapy. Cancer Journal from Scientific American 4, 209–217.

    CAS  Google Scholar 

  • José-Yacamán, M., Ascencio, J.A. and Lin, H. (2001) The structure, shape and stability of nanometric sized particles. Journal of Vacuum Science and Technology B19, 1091–1107.

    Google Scholar 

  • Juhász, A.Z. (1974) Mechanochemische Aktivierung von Silikatmineralen durch Trocken-Feinmahlen. Aufbereitungs-Technik 10, 558–562.

    Google Scholar 

  • Juhász, Z. (1985) Mechanochemische Erscheinungen beim Feinmahlen von Tonmineralen. Sprechsall 118, 110–117.

    Google Scholar 

  • Juhász, A.Z. and Kolláth, B. (1993) Mechanochemical reactions of OH-containing crystals. Acta Chimica Hungarica-Models in Chemistry 130, 725–735.

    Google Scholar 

  • Juhász, Z.A. (1998) Colloid-chemical aspects of mechanical activation. Particulate Science and Technology 16, 145–161.

    Google Scholar 

  • Juillerat-Jeanneret, L. (2006) Critical analysis of cancer therapy using nanomaterials. In: Challa S.S.R. Kumar (Ed.) Nanomaterials for Cancer Therapy. Wiley-VCH, Weinheim 2006, pp. 199–241.

    Google Scholar 

  • Keskinen, J., Ruuskanen, P., Karttunen, M. and Hannula, S.-P. (2001) Synthesis of silver powder using a mechanochemical process. Applied Organometallic Chemistry 15, 393–395.

    CAS  Google Scholar 

  • Khaleel, A. and Richards, R.M. (2001) Ceramics. In: K.J. Klabunde (Ed.) Nanoscale Materials in Chemistry. John Wiley & Sons, Hoboken, New Jersey, pp. 85–120.

    Google Scholar 

  • Kim, D.K., Jo, Y.S., Dobson, J., El Haj, A. and Muhammed, M. (2006) Nanomaterials for controlled release of anticancer agents. In: Challa S.S.R. Kumar (Ed.) Nanomaterials for Cancer Therapy. Wiley-VCH, Weinheim 2006, pp. 168–198.

    Google Scholar 

  • Klabunde, K.J., Stark, J., Koper, O., Mohs, C., Park, D., Decker, S., Jiang, Y., Lagadic, I. and Zhang, D. (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. Journal of Physical Chemistry 100, 12142–12153.

    CAS  Google Scholar 

  • Klabunde, K.J. (Ed.) (2001) Nanoscale Materials in Chemistry. John Wiley & Sons, Hoboken, New Jersey, 292p.

    Google Scholar 

  • Koch, C.C. (1993) The synthesis and structure of nanocrystalline materials produced by mechanical attrition: review. Nano-Structured Materials 2, 109–120.

    CAS  Google Scholar 

  • Koch, C.C. (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nano-Structured Materials 9, 13–22.

    CAS  Google Scholar 

  • Koper, O. and Winecki, S. (2001) Specific heats and melting points of nanocrystalline materials. In: K.J. Klabunde (Ed.) Nanoscale Materials in Chemistry. John Wiley & Sons, Hoboken, New Jersey, pp. 263–278.

    Google Scholar 

  • Kosmac, T. and Courtney, T.H. (1992) Milling and mechanical alloying of inorganic nonmetallics. Journal of Materials Research 7, 1519–1525.

    CAS  Google Scholar 

  • Kosmac, T., Maurice, D. and Courtney, T.H. (1993) Synthesis of nickel sulfides by mechanical alloying. Journal of American Ceramic Society 76, 2345–2352.

    CAS  Google Scholar 

  • Kotkata, M.F. and Mahmoud, E.A. (1982) Non-isothermal crystallization kinetic studies on amorphous chalcogenide semiconductors. Materials Science Engineering 54, 163–168.

    CAS  Google Scholar 

  • Kubaschewski, O. and Alcock, C.B. (1979) Metallurgical Thermochemistry. Pergamon Press, New York.

    Google Scholar 

  • Kumar S.S.R. Challa (2006) Nanomaterials for Cancer Therapy. Wiley-VCH, Weinheim 2006, pp. 168–198.

    Google Scholar 

  • Lambeth, D., Velu, E., Bellesis, G., Lee, L. and Laughlin, D. (1996) Media for 10Gb/in2 hard disk storage: Issues and status (invited). Journal of Applied Physics 79, 4497–4501.

    Google Scholar 

  • Lan, Ch., Hong, K., Wang, W. and Wang, G. (2003) Synthesis of ZnS nanorods by annealing precursors ZnS nanoparticles in NaCl flux. Solid State Communications 125, 455–458.

    CAS  Google Scholar 

  • Lea, M.C. (1866) Researches on the latent image. The British Journal of Photography 13, 84.

    Google Scholar 

  • Lea, M.C. (1891a) On gold-coloured allotropic silver, Part I. American Journal of Science-Third Series 141, 179–190.

    Google Scholar 

  • Lea, M.C. (1891b) On allotropic silver. Part II-Relations of allotropic silver with silver as it exists in silver compounds. American Journal of Science-Third Series 141, 259–267.

    Google Scholar 

  • Lea, M.C. (1892) Disruption of the silver haloid molecule by mechanical force. American Journal of Science-Third Series 143, 527–531.

    Google Scholar 

  • Lea, M.C. (1893) On endothermic decomposition obtained by pressure. Second part. Transformation of Energy by Shearing Stress. American Journal of Science-Third Series 145, 413–420.

    Google Scholar 

  • Lea, M.C. (1894) Transformation of mechanical into chemical energy. Third part. Acting of shearing stress continued. American Journal of Science-Third Series 147, 377–381.

    Google Scholar 

  • Lin, I.J. and Nadiv, S. (1970) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Materials Science and Engineering 393, 193–209.

    Google Scholar 

  • Lin, I.J. and Somasundaran, P. (1972) Alternation in properties of samples during their preparation by grinding. Powder Technology 6, 171–179.

    CAS  Google Scholar 

  • Lin, I.J. and Niedzwiedz, S. (1973) Kinetics of the massicot-litharge transformation during comminution. Journal of American Chemical Society 56, 62–64.

    CAS  Google Scholar 

  • Lin, I.J, Nadiv, S. and Grodzian, D.J.M. (1975) Changes in the state of solids and mechanochemical reactions in prolonged comminution processes. Minerals Science Engineering 7, 313–336.

    CAS  Google Scholar 

  • Lin, Y., Zapien, J.A., Shan, Y.Y., Geng, Ch.Y., Lee, Ch.S. and Lee, S.T. (2005) Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons. Advanced Materials 17, 1372–1377.

    Google Scholar 

  • Lindemann, F.A. (1910) Über die Berechnung molekularer Eigenfrequenzen. Physikalische Zeitschrift 11, 609–612.

    CAS  Google Scholar 

  • Lines, M.G. (2008) Nanomaterials for practical functional uses. Journal of Alloys and Compounds 449, 242–245.

    CAS  Google Scholar 

  • Lippens, P.E. and Lanoo, M. (1989) Calculation of the band gap for small CdS and ZnS crystallites. Physical Review B39, 10935–10942.

    Google Scholar 

  • Luther III, G.W., Theberge, S.M. and Richard, D.T. (1999) Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochimica et Cosmochimica Acta 63, 3159–3169.

    Google Scholar 

  • Lyakhov, N.Z. (1984) The kinetics of mechanochemical reactions. Folia Montana, Extraordinary Number, 40–49.

    Google Scholar 

  • Lyakhov, N.Z. (1993) Mechanical activation from the viewpoint of kinetic reaction mechanisms. In: K. Tkáčová et al. (Eds.) Proceedings of the Ist International Conference on Mechanochemistry INCOME’93, Vol. 1, Cambridge Interscience Publishing, Cambridge, pp. 59–65.

    Google Scholar 

  • Mader, S.S. (2001) Biology. Mc-Graw-Hill, Boston.

    Google Scholar 

  • McCormick, P.G. (1995) Application of mechanical alloying to chemical refining: Overview. Materials Transactions, JIM, 36, 161–169.

    CAS  Google Scholar 

  • Mee, C. (1994) The Physics of Magnetic Recording. Amsterdam, North-Holland.

    Google Scholar 

  • Metals Handbook. (1973) Metallography, Structures and Phase Diagram. American Society for Metals, Metals Park, Ohio, Vol. 8, p. 325.

    Google Scholar 

  • Miani, F. and Maurigh, F. (2004) Mechanosynthesis of nanophase materials. In: J.A. Schwarz, C.I., Contescu, K., Putyera (Eds.) Dekker Encyclopedia of Nanoscience and Nanotechnology. Marcel Dekker, New York, pp. 1787–1795.

    Google Scholar 

  • Mie, G. (1908) Beitrage zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 25, 377–445.

    CAS  Google Scholar 

  • Moghimi, S.M., Hunter, A.C. and Murray, J.C. (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews 53, 183–318.

    Google Scholar 

  • Morales, J., Perez-Vicente, C. and Tirado, J.L. (1992) Chemical and electrochemical lithium intercalation and staging in 2H-SnS2. Solid State Ionics 51, 133–138.

    CAS  Google Scholar 

  • Murphy, C.J. and Coffer, J.L. (2002) Quantum dots: a Primer. Applied Spectroscopy 56, 16A–27A.

    CAS  Google Scholar 

  • Müller-Warmuth, W. and Schöllhorn, R. (Eds.) (1994) Progress in Intercalation Research. Kluwer Academic, Dodrecht.

    Google Scholar 

  • Murty, B.S. and Ranganathan, S. (1998) Novel materials synthesis by mechanical alloying/milling. International Materials Reviews 43, 101–141.

    CAS  Google Scholar 

  • Nie, Q., Yuan, Q., Wang, Q. and Zhude, X. (2004) In situ synthesis of ZnxCd1-xS nanorods by hydrothermal route. Journal of Materials Science 39, 5611–5612.

    CAS  Google Scholar 

  • Oleszak, D. and Shingu, P. (1996) Nanocrystalline metals prepared by low energy ball milling. Journal of Applied Physics 79, 2975–2980.

    CAS  Google Scholar 

  • Ostwald, W. (1887) Lehrbuch der Allgemeinen Chemie. 2. Auflage, 2. Band, Engelmann, Leipzig, 616p.

    Google Scholar 

  • Ostwald, W. (1909) Grundriss der Kolloidchemie. Verlag von Theodor Steinkopff, Dresden, 302p.

    Google Scholar 

  • Ostwald, W. (1927) Die Welt der vernachlässigten Dimensionen. Verlag von Theodor Steinkopff, Dresden, 336p.

    Google Scholar 

  • Parker, L.H. (1914) Reactions by trituration. Journal of the Chemical Society 105, 1504–1516.

    CAS  Google Scholar 

  • Parker, L.H. (1918) Reactions between solid substances. Journal of the Chemical Society 113, 396–409.

    CAS  Google Scholar 

  • Pawaskar, N.R., Sathaye, S.D., Bhadhabe, M. and Patil, K.R. (2002) Applicability of liquid-liquid interface reaction technique for the preparation of zinc sulphide nanoparticulate thin films. Materials Research Bulletin 37, 1539–1546.

    CAS  Google Scholar 

  • Penn, R.L. and Banfield, J.F. (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions. Insight from titania. Geochimica et Cosmochimica Acta 63, 1549–1557.

    CAS  Google Scholar 

  • Petch, N.J. (1953) The cleavage strength of polycrystals. Journal of Iron and Steel Industry 174, 25–28.

    CAS  Google Scholar 

  • Peters, K. (1962) Mechanochemische Reaktionen. In: H. Rumpf and D. Behrens (Eds.) Proceedings of the 1st European Symposium on Size Reduction. Frankfurt a.M., Dechema, Verlag Chemie, Weinheim, pp. 78–98.

    Google Scholar 

  • Pfund, A.H. (1930) Bismuth-black and it applications. Physical Review 35, 1434–1437.

    Google Scholar 

  • Pierce, T. (1928) Mechanochemistry and the colloid mill including the practical applications of fine dispersion. Chemical Catalog Company, New York, 191p.

    Google Scholar 

  • Pileni, M.P. (1993) Reverse micelles as microreactors. Journal of Physical Chemistry 97, 6961–6973.

    CAS  Google Scholar 

  • Pileni, M.P. (1997) Nanosized particles made in colloidal assemblies. Langmuir 13, 3266–3276.

    CAS  Google Scholar 

  • Poole, Ch.P., Jr. and Owens, F.J. (2003) Introduction to Nanotechnology. John Wiley & Sons, Hoboken, New Jersey, 388p.

    Google Scholar 

  • Pourghahramani, P. and Forssberg, E. (2006a) Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing 79, 106–119.

    Google Scholar 

  • Pourghahramani, P. and Forssberg, E. (2006b) Comparative study of microstructural characteristics and stored energy of mechanically activated hematite in different grinding environments. International Journal of Mineral Processing 79, 120–139.

    Google Scholar 

  • Rouxel, J., Meerschaut, A. and Wiegers, G.A. (1995) Chalcogenide misfit layer compounds. Journal of Alloys and Compounds 229, 144–157.

    CAS  Google Scholar 

  • Roy, R. (1994) Accelerating the kinetics of low-temperature inorganic synthesis. Journal of Solid State Chemistry 111, 11–17.

    CAS  Google Scholar 

  • Rupp, J. and Birringer, R. (1987) Enhanced specific heat capacity (C_p) measurements (150–300 K) of nanometric-sized crystalline materials. Physical Review B36, 7888–7890.

    Google Scholar 

  • Schrader, R. and Hoffmann, B. (1973) Änderung der Reaktionsfähigkeit von Festkörpern durch vorhergehende mechanische Bearbeitung. In: V.V. Boldyrev and K. Meyer (Eds.) Festkörperchemie. Deutscher Veralg für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Senna, M. (2001) Recent development of materials design through a mechanochemical route. International Journal of Inorganic Materials 3, 509–514.

    CAS  Google Scholar 

  • Serpe, L. (2006) Conventional chemotherapeutic drug nanoparticles for cancer treatment. In: Challa S.S.R. Kumar (Ed.) Nanomaterials for Cancer Therapy. Wiley-VCH, Weinheim 2006, pp. 1–39.

    Google Scholar 

  • Shao, M., Li, Q., Xie, B., Wu, J. and Qian, Y. (2003) The synthesis of CdS/ZnO and CdS/Pb3O4 composite materials via microwave irradiation. Materials Chemistry and Physics 78, 288–291.

    Google Scholar 

  • Sharma, D., Chelvi, T.P., Kaur, J., Chakravorty, K., De, T.K., Maitra, A. and Ralhan, R. (1996) Novel TaxolR formulation: polyvinylpyrrolidone nanoparticles-encapsulated TaxolR for drug delivery in cancer therapy. Oncological Research 8, 281–286.

    CAS  Google Scholar 

  • Sharma, R.C. and Chang, Y.A. (1986) In: T.B. Massalsky, H. Okamoto, P.R. Subramanian and L. Kacprzak, (Eds.) Binary Alloy Phase Diagrams. ASM International, Materials Park, OH, p. 3280.

    Google Scholar 

  • Sherif El-Eskandarany, M., El-Bahnasawy, H.N., Ahmed, H.A. and Eissa, N.A. (2001) Mechanical solid-state reduction of hematite with magnesium. Journal of Alloys and Compounds 314, 286–295.

    CAS  Google Scholar 

  • Shi, F.G. (1994) A glass transition: unified treatment. Journal of Materials Research 9, 1908–1916.

    CAS  Google Scholar 

  • Siegel, R.W. and Fougere, G.E. (1994) In: G.C. Hadjipahayis and R.W. Siegel (Eds.) Nanophase Materials. Kluwer, Dordrecht.

    Google Scholar 

  • Siegel, R.W. and Fougere, G.E. (1995) Mechanical properties of nanophase materials. Nano-Structured Materials 6, 205–216.

    CAS  Google Scholar 

  • Siegel, R.W. (1997) Mechanical properties of nanophase materials. Materials Science Forum 235–238, 851–860.

    Google Scholar 

  • Simionesku, K. and Oprea, K. (1971) Mechanochemistry of Macromolecular Compounds. Mir, Moscow, 357p.

    Google Scholar 

  • Smalley, R. (1999) Nanotechnology: The State of Nano-Science and Its Projects for the next Decade. US Congress Hearings.

    Google Scholar 

  • Smékal, A. (1942) Ritzvorgang und molekulare Festigkeit. Naturwissenschaften, 30, 224–225.

    Google Scholar 

  • Smith, E.F. (1972) Chemistry in America, Chapters from the History of the Science in the United States, Arno Press, New York, 301p.

    Google Scholar 

  • Smolyakov, V.K., Lapshin, O.V. and Boldyrev, V.V. (2007) Macroscopic theory of mechanochemical synthesis in heterogeneous systems. International Journal of Self-Propagating High-Temperature Synthesis 16, 1–11.

    CAS  Google Scholar 

  • Smolyakov, V.K., Lapshin, O.V. and Boldyrev, V.V. (2008) Mechanochemical synthesis of nanosize products in heterogeneous systems: Macroscopic kinetics. Journal of Self-Propagating High-Temperature Synthesis 17, 20–29.

    CAS  Google Scholar 

  • Sorensen, C.M. (2001) Magnetism. In: K.J. Klabunde (Ed.) Nanoscale Materials in Chemistry, John Wiley & Sons, Hoboken, New Jersey, pp. 169–221.

    Google Scholar 

  • Speliotis, D. (1999) Magnetic recording beyond the first 100 years. Journal of Magnetics and Magnetic Materials 193, 29–35.

    CAS  Google Scholar 

  • Staudinger, H. and Dreher, E. (1936) Mitteilung über hochpolymere Verbindungen. Berichte des Deutschen Chemische Gesellschaft A 69, 1901–1099.

    Google Scholar 

  • Steigerwald, M.L. and Brus, L.E. (1990) Semiconductor crystallites: a class of large molecules. Account on Chemical Research 23, 183–188.

    CAS  Google Scholar 

  • Steinicke, U., Ebert, I., Geissler, H., Hennig, H.-P. and Kretzschmar, U. (1978) Reaktivität on mechanisch aktivierten Quarz. Kristall und Technik 597–603.

    Google Scholar 

  • Steinicke, U. and Linke, E. (1982) Die Rolle von Anregungszuständen und strukturdefekten be mechanisch aktivierten Festkörperreaktionen. Zwitschrift für Chemie 22, 397–401.

    Google Scholar 

  • Steiniger, S.C., Kreuter, J., Khalansky, A.S., Skidan, I.N., Bobruskin, A.I., Smirnova, Z.S., Severin, S.E., Uhl, R., Kock, M., Geiger, K.D. and Gelperina, S.E. (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. International Journal of Cancer 109, 759–767.

    CAS  Google Scholar 

  • Stöber, W. and Arnold, M. (1961) Anomalien by der Ablosung von Kieselsaure von der oberflache feinkorniger Siliziumdioxydpulver. Kolloid Zeitschrift 174, 20–27.

    Google Scholar 

  • Stoner, E.C. and Wohlfarth, E.P. (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society London 240, 599–644.

    Google Scholar 

  • Suryanarayana, C. (1994) Structure and properties of nanocrystalline materials. Bulletin of Materials Science 17, 307–346.

    CAS  Google Scholar 

  • Suryanarayana, C. (1995) Nanocrystalline materials. International Materials Reviews 40, 41–64.

    CAS  Google Scholar 

  • Suryanarayana, C. (2001) Mechanical alloying and milling. Progress in Materials Science 46, 1–184.

    CAS  Google Scholar 

  • Suslick, K.S. (1990) Sonochemistry. Science 247, 1439–1445.

    CAS  Google Scholar 

  • Takacs, L. (2000) Quicksilver from cinnabar: the first documented mechanochemical reaction? Journal of Metals, January, 12–13.

    Google Scholar 

  • Takacs, L. (2002) Self-sustaining reactions induced by ball milling. Progress in Materials Science 47, 355–414.

    CAS  Google Scholar 

  • Takacs, L. (2003) M. Carey Lea, the father of mechanochemistry. Bulletin of Historical Chemistry 28, 26–34.

    CAS  Google Scholar 

  • Takacs, L. (2004) M. Carey Lea, the first mechanochemist. Journal of Materials Science 39, 4987–4993.

    CAS  Google Scholar 

  • Takacs, L. (2007) The mechanochemical reduction of AgCl with metals, revisiting experiments of Michael Faraday. Journal of Thermal Analysis and Calorimetry 90, 90–94.

    Google Scholar 

  • Takagi, M. (1954) Electron-diffraction study of liquid-solid transition of thin metal films. Journal of Physical Society Japan 9, 359–363.

    Google Scholar 

  • Tammann, G. (1929) Der Einfluss der Kaltbearbeitung auf die chemischen Eigenschaften insbesondere von Metallen. Zeitschrift für Elektrochemie 35, 21–28.

    CAS  Google Scholar 

  • Teo, B.K. and Sloane, N.J. (1985) Magic numbers in polygonal and polyhedral clusters. Inorganic Chemistry 24, 4545–4558.

    CAS  Google Scholar 

  • Thiessen, P.A., Meyer, K. and Heinicke, G. (1967) Grundlagen der Tribochemie. Akademie Verlag, Berlin 1967.

    Google Scholar 

  • Thiessen, P.A., Heinicke, G. and Schober, E. (1970) Zur tribochemischen Umsetzung von Gold und CO2 mit Hilfe radioaktiver Markierung. Zeitschrift für Anorganische und Allgemeine Chemie 377, 20–28.

    CAS  Google Scholar 

  • Thiessen, K.P. (1979) Energetische Randbedingungen tribochemischer Prozesse. I. Stufenschema der Energie-,,Zuständ”, Zeitschrift für Physikalische Chemie, Leipzig 260, 403–409.

    Google Scholar 

  • Thiessen, K.P. and Sieber, K. (1979a) Energetische Randbedingungen tribochemischer Prozesse. II. ,,Tribochemische Effekte“ Stationäre Zustände n-ter Ordnung. Zeitschrift für Physikalische Chemie, Leipzig 260, 410–416.

    Google Scholar 

  • Thiessen, K.P. and Sieber, K. (1979b) Energetische Randbedingungen tribochemischer. Prozesse. III. Hypothetische Geschwindigkeits/Affinitätsbeziehung tribochemischer Prozesse. Zeitschrift für Physikalische Chemie, Leipzig 260, 417–422.

    Google Scholar 

  • Tjong, S.C. and Chen, H. (2004) Nanocrystalline materials and coatings. Materials Science and Engineering R45, 1–88.

    CAS  Google Scholar 

  • Tkáčová, K., Paholič, G., Šepelák, V. and Sekula, F. (1988) Simple model of mechanical activation of solids. In: K. Tkáčová et al. (Eds.) Proceedings of the 5th International Symposium “Theoretical and Technological Aspects of Disintegration and Mechanical Activation” Part I, Tatranská Lomnica, pp. 70–79.

    Google Scholar 

  • Tompkins, F.C. (1963) Superficial Chemistry and Solid Imperfections. Inaugural lectures, Imperial College of Science and Technology, London.

    Google Scholar 

  • Tsuzuki, T., Ding, J. and McCormick, P.G. (1997) Mechanochemical synthesis of ultrafine zinc sulfide particles. Physica B, 378–387.

    Google Scholar 

  • Tsuzuki, T. and McCormick, P.G. (1997) Synthesis of CdS quantum dots by mechanochemical reaction. Applied Physics A65, 607–609.

    CAS  Google Scholar 

  • Tsuzuki, T. and McCormick, P.G. (1999) Mechanochemical synthesis of metal sulphide nanoparticles. Nanostructured Materials 12, 75–78.

    Google Scholar 

  • Tsuzuki, T. and McCormick, P.G. (2004) Mechanochemical synthesis of nanoparticles. Journal of Materials Science 39, 5143–5146.

    CAS  Google Scholar 

  • Valiev, R.Z., Mulyukov, R.R., Mulyukov, Kh.Ya., Novikov, V.I. and Trusov, L.I. (1989) Curie temperature and saturation (magnetic) of nickel with a submicrocrystalline structure. Pisma v Zurnal Techniceskoj Fiziki 15, 78–81.

    CAS  Google Scholar 

  • Velumani, S. and Ascencio, J.A. (2004) Formation of ZnS nanorods by simple evaporation. Applied Physics A79, 153–156.

    Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L. (1982) The NBS Tables of Chemical Thermodynamic Properties. Journal of Physical and Chemical Reference Data 11, Supplement No. 2.

    Google Scholar 

  • Wanetig, P. (1921) Zur Frage der Zähflüssigkeitsänderung von Viskoselösungen. Textilforschung 3, 202–206.

    Google Scholar 

  • Wanetig, P. (1922) Textilforschung 4, 66–69.

    Google Scholar 

  • Wanetig, P. (1927) Zur Frage der Zähflüssigkeitsänderung von Viskoselösungen. Kolloid Zeitschrift 41, 152–158.

    Google Scholar 

  • Wang, L.P. and Hong, G.Y. (2000) A new preparation of zinc sulfide nanoparticles by solid-state method at low temperature. Materials Research Bulletin 35, 695–701.

    CAS  Google Scholar 

  • Wang, W., Liu, Z., Zheng, Ch., Xu, C., Liu, Y. and Wang, G. (2003) Synthesis of CdS nanoparticles by a novel and simple one-step, solid state reaction in the presence of a nonionic surfactant. Materials Letters 57, 2755–2760.

    CAS  Google Scholar 

  • Warren, B.E. and Averbach, B.L. (1950) The effect of cold-work distortion on X-ray patterns. Journal of Applied Physics 21, 595–599.

    CAS  Google Scholar 

  • Weichert, R. and Schönert, K. (1974) On the temperature rise at the tip of a fast running crack. Journal of Mechanics and Physics of Solids 22, 127–133.

    Google Scholar 

  • Weichert, R. (1976) Untersuchungen zur Temperatur an der Bruchspitze, Dr.-Ing. Dissertation, Karlsruhe.

    Google Scholar 

  • Weller, H. (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angewandte Chemie International Edition 32, 41–53.

    Google Scholar 

  • Wenzel, C.F. (1777) Lehre von der chemischen Verwandtschaft. Dresden.

    Google Scholar 

  • Whitcomb, D. (2006) Mathew Carey Lea: chemists, photographic scientist. Chemical Herritage News Magazine 24, 1–2.

    Google Scholar 

  • Wong, E. quoted by R.S. Boyd (1999) Knight Rider Newspapers, Kansas City Star, Monday, November 8.

    Google Scholar 

  • Yan, B., Chen, D. and Jiao, X. (2004) Synthesis, characterization and fluorescence properties of CdS /P(N-iPAAm) nanocomposites. Materials Research Bulletin 39, 1655–1662.

    CAS  Google Scholar 

  • Yonezawa, T. (2004) Well-dispersed bimetallic nanoparticles. In: Y. Waseda and A. Muramatsu (Eds.) Morphology Control of Materials and Nanoparticles. Springer, Heidelberg, pp. 85–112.

    Google Scholar 

  • Xiao, T.D., Strutt, P.R., Benaissa, M., Chen, H. and Kear, B.H. (1998) Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities. Nanostructured Materials 10, 1051–1061.

    CAS  Google Scholar 

  • Xu, Ch., Zhang, Z. and Ye, Q. (2004) A novel facile method to metal sulfide (metal=Cd, Ag, Hg) nanocrystallites. Materials Letters 58, 1671–1676.

    CAS  Google Scholar 

  • Zeisser-Labouébe, M., Vargas, A. and Delie, F. (2006) Nanoparticles for photodynamic therapy. In: Challa S.S.R. Kumar (Ed.) Nanomaterials for Cancer Therapy. Wiley-VCH, Weinheim 2006, pp. 40–86.

    Google Scholar 

  • Zelikman, A.N., Voldman, G.M. and Belyayevskaya, L.V. (1975) Theory of Hydrometallurgical Processes. Metallurgija, Moscow (in Russian).

    Google Scholar 

  • Zhong, X., Feng, Y.Y., Knoll, W. and Han, M.Y. (2003) Alloyed ZnxCd1-xS nanocrystals with highly narrow luminiscence spectral width. Journal of American Chemical Society 125, 13559–13563.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baláž, P. (2008). Mechanochemistry and Nanoscience. In: Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74855-7_1

Download citation

Publish with us

Policies and ethics