Skip to main content

Monotonicity of Non-deterministic Graph Searching

  • Conference paper
Book cover Graph-Theoretic Concepts in Computer Science (WG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4769))

Included in the following conference series:

Abstract

In graph searching, a team of searchers is aiming at capturing a fugitive moving in a graph. In the initial variant, called invisible graph searching, the searchers do not know the position of the fugitive until they catch it. In another variant, the searchers know the position of the fugitive, i.e. the fugitive is visible. This latter variant is called visible graph searching. A search strategy that catches any fugitive in such a way that, the part of the graph reachable by the fugitive never grows is called monotone. A priori, monotone strategies may require more searchers than general strategies to catch any fugitive. This is however not the case for visible and invisible graph searching. Two important consequences of the monotonicity of visible and invisible graph searching are: (1) the decision problem corresponding to the computation of the smallest number of searchers required to clear a graph is in NP, and (2) computing optimal search strategies is simplified by taking into account that there exist some that never backtrack.

Fomin et al. (2005) introduced an important graph searching variant, called non-deterministic graph searching, that unifies visible and invisible graph searching. In this variant, the fugitive is invisible, and the searchers can query an oracle that knows the current position of the fugitive. The question of the monotonicity of non-deterministic graph searching is however left open.

In this paper, we prove that non-deterministic graph searching is monotone. In particular, this result is a unified proof of monotonicity for visible and invisible graph searching. As a consequence, the decision problem corresponding to non-determinisitic graph searching belongs to NP. Moreover, the exact algorithms designed by Fomin et al. do compute optimal non-deterministic search strategies.

The second author received additional supports from the project “Alpage” of the ACI Masses de Données, from the project “Fragile” of the ACI Sécurité Informatique, and from the project “Grand Large” of INRIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barát, J.: Directed Path-width and Monotonicity in Digraph Searching. Graphs and Combinatorics 22(2), 161–172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: SPAA 2002. Proceedings of the 14th Annual ACM-SIAM Symposium on Parallel Algorithms and Architectures, pp. 200–209 (2002)

    Google Scholar 

  3. Berwanger, D., Dawar, A., Hunter, P.W., Kreutzer, S.: Dag-width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bienstock, D., Seymour, P.D.: Monotonicity in graph searching. Journal Algorithms 12(2), 239–245 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theoretical Computer Science 172(1–2), 233–254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The Vertex Separation and Search Number of a Graph. Information and Computation 113(1), 50–79 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic Graph Searching: From Pathwidth to Treewidth. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 364–375. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Fraigniaud, P., Nisse, N.: Monotony Properties of Connected Visible Graph Searching. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 229–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed Tree-Width. Journal of Combinatorial Theory Series B 82(1), 138–155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoretical Computer Science 47(2), 205–218 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. LaPaugh, A.S.: Recontamination does not help to search a graph. Journal of the ACM 40(2), 224–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Obdrzálek, J.: DAG-width: connectivity measure for directed graphs. In: SODA 2006. Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821 (2006)

    Google Scholar 

  14. Parsons, T.D.: Pursuit-evasion in a graph. Theory and Applications of Graphs, 426–441 (1976)

    Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph Minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph Minors. X. Obstructions to Tree-Decomposition. Journal of Combinatorial Theory Series B 52(2), 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Seymour, P.D., Thomas, R.: Graph Searching and a Min-Max Theorem for Tree-Width. Journal of Combinatorial Theory Series B 58(1), 22–33 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, B., Dyer, D., Alspach, B.: Sweeping Graphs with Large Clique Number. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 908–920. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Brandstädt Dieter Kratsch Haiko Müller

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazoit, F., Nisse, N. (2007). Monotonicity of Non-deterministic Graph Searching. In: Brandstädt, A., Kratsch, D., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2007. Lecture Notes in Computer Science, vol 4769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74839-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74839-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74838-0

  • Online ISBN: 978-3-540-74839-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics