Skip to main content

On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Graphs

  • Conference paper
Book cover Graph-Theoretic Concepts in Computer Science (WG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4769))

Included in the following conference series:

  • 782 Accesses

Abstract

It has been shown in [9] that there exist planar digraphs that require exponential area in every upward straight-line planar drawing. On the other hand, upward poly-line planar drawings of planar graphs can be realized in Θ(n 2) area [9]. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (directed trees), is a bipartite graph (directed bipartite graphs), or is an outerplanar graph (directed outerplanar graphs). Concerning directed trees, we show that optimal Θ(n logn) area upward straight-line/poly-line planar drawings can be constructed. However, we prove that if the order of the neighbors of each node is assigned, then exponential area is required for straight-line upward drawings and quadratic area is required for poly-line upward drawings, results surprisingly and sharply contrasting with the area bounds for planar upward drawings of undirected trees. After having established tight bounds on the area requirements of planar upward drawings of several families of directed trees, we show how the results obtained for trees can be exploited to determine asymptotic optimal values for the area occupation of planar upward drawings of directed bipartite graphs and directed outerplanar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to draw a series-parallel digraph. Int. J. Comput. Geom. Appl. 4(4), 385–402 (1994)

    Article  MATH  Google Scholar 

  2. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)

    Article  MathSciNet  Google Scholar 

  3. Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River, NJ (1999)

    Book  MATH  Google Scholar 

  6. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. In: Graph Drawing, pp. 89–100 (2005)

    Google Scholar 

  7. Di Battista, G., Liu, W.P., Rival, I.: Bipartite graphs, upward drawings, and planarity. Inf. Process. Lett. 36(6), 317–322 (1990)

    Article  MATH  Google Scholar 

  8. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)

    Article  Google Scholar 

  9. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Disc. & Computat. Geometry 7, 381–401 (1992)

    Article  MATH  Google Scholar 

  10. Garg, A., Rusu, A.: Area-efficient drawings of outerplanar graphs. In: Graph Drawing, pp. 129–134 (2003)

    Google Scholar 

  11. Garg, A., Rusu, A.: Area-efficient order-preserving planar straight-line drawings of ordered trees. Int. J. Comput. Geometry Appl. 13(6), 487–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garg, A., Tamassia, R.: Efficient computation of planar straight-line. In: Graph Drawing (Proc. ALCOM Workshop on Graph Drawing), pp. 298–306 (1994)

    Google Scholar 

  13. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Papakostas, A.: Upward planarity testing of outerplanar dags. In: Graph Drawing, pp. 298–306 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Brandstädt Dieter Kratsch Haiko Müller

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frati, F. (2007). On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2007. Lecture Notes in Computer Science, vol 4769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74839-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74839-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74838-0

  • Online ISBN: 978-3-540-74839-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics