Skip to main content

SVM-Based Time Series Prediction with Nonlinear Dynamics Methods

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Abstract

A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, L.A., Rodrigues, G.G., Mendes, E.M.: Nonlinear identification and cluster analysis of chaotic attractors from a real implementation of Chua’s circuit. International Journal of Bifurcation and Chaos 6(7), 1411–1423 (1997)

    Article  Google Scholar 

  2. Arbabanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, Heidelberg (1996)

    Google Scholar 

  3. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll. IEEE Transactions on Circuits and Systems 32(8), 797–818 (1985)

    Article  MATH  Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New York (2000)

    Google Scholar 

  5. Eckmann, J.P., Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. Review of Modern Physics 57, 617–659 (1985)

    Article  Google Scholar 

  6. Grassberger, P., Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica D9, 189–208 (1983)

    Google Scholar 

  7. Hübner, U., Weiss, C.O., Abraham, N.B., Tang, D.: Lorenz-Like Chaos in NH3-FIR Lasers. In: Time Series Prediction. Forecasting the Future and Understanding the Past, pp. 73–104. Addison-Wesley, Reading (1994)

    Google Scholar 

  8. Joachim, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  9. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Kennel, M.B., Brown, R., Arbabanel, H.D.I.: Determining Embedding Dimension for Phase-Space Reconstruction using a Geometrical Construction. Physical Review A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  11. Kégl, B.: Intrinsic Dimension Estimation Using Packing Numbers. Advances in Neural Information Processing 15. MIT Press, Cambridge (2003)

    Google Scholar 

  12. Mañé, R.: On the dimension of compact invariant sets of certain nonlinear maps. In: Dynamical Systems and Turbolence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 230–242. Springer-Verlag, Heidelberg (1981)

    Chapter  Google Scholar 

  13. Müller, K-R., Rätsch, G., Kohlmorgen, J., Smola, A., Schölkopf, B., Vapnik, V.: Time Series Prediction using support vector regression and neural network. In: Higuchi, T., Takizawa, Y. (eds.) Proceedings of Second International Symposium on Frontiers of Time Series Modelling: Nonparametric Approach to Knowledge Discovery, Institute of mathematical statistic publication (2000)

    Google Scholar 

  14. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  15. Packard, N., Crutchfield, J., Farmer, J., Shaw, R.: Geometry from a time series. Physical Review Letters 45(1), 712–716 (1980)

    Article  Google Scholar 

  16. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Stone, M.: Cross-validatory choice and assessment of statistical prediction. Journal of the Royal Statistical Society 36(1), 111–147 (1974)

    MATH  Google Scholar 

  18. Takens, F.: Detecting strange attractor in turbolence. In: Dynamical Systems and Turbolence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer-Verlag, Heidelberg (1981)

    Chapter  Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  20. Tong, H.: Nonlinear Time Series. Oxford University Press, Oxford (1990)

    Google Scholar 

  21. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  22. Wijngaard, J.B., Klein Tank, A.M.G., Konnen, G.P.: Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 23, 679–692 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Camastra, F., Filippone, M. (2007). SVM-Based Time Series Prediction with Nonlinear Dynamics Methods. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74829-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74828-1

  • Online ISBN: 978-3-540-74829-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics