Skip to main content

Presynaptic Neurotoxins with Enzymatic Activities

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Toxins that alter neurotransmitter release from nerve terminals are of considerable scientific and clinical importance. Many advances were recently made in the understanding of their molecular mechanisms of action and use in human therapy. Here, we focus on presynaptic neurotoxins, which are very potent inhibitors of the neurotransmitter release because they are endowed with specific enzymatic activities: (1) clostridial neurotoxins with a metallo-proteolytic activity and (2) snake presynaptic neurotoxins with a phospholipase A2 activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Miledi R (1978) Inhibition of beta-bungarotoxin action by bee venom phospholipase A2. Proc R Soc Lond B Biol Sci 200:225-30

    PubMed  Google Scholar 

  • Abe T, Limbrick AR, Miledi R (1976) Acute muscle denervation induced by beta-bungarotoxin. Proc R Soc Lond B Biol Sci 194:545-53

    PubMed  Google Scholar 

  • Abe T, Alem á S, Miledi R (1977) Isolation and characterization of presynaptically acting neurotoxins from the venom of bungarus snakes. Eur J Biochem 80:1-12

    PubMed  Google Scholar 

  • Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S (2004) Structural analysis of botulinum neurotoxin type e catalytic domain and its mutant Glu212->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 43:6637-44

    PubMed  Google Scholar 

  • Agarwal R, Binz T, Swaminathan S (2005) Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry 44:11758-65

    PubMed  Google Scholar 

  • Ahsan CR, Hajn óczky G, Maksymowych AB, Simpson LL (2005) Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells. J Pharmacol Exp Ther 315:1028-35

    PubMed  Google Scholar 

  • Angaut-Petit D, Molg ó J, Comella JX, Faille L, Tabti N (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features. Neuroscience 37:799-808

    PubMed  Google Scholar 

  • Aoki KR (2001) A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39:1815-20

    PubMed  Google Scholar 

  • Aoki KR (2003) Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 43 Suppl 1:S9-15

    Google Scholar 

  • Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type g light chain: serotype divergence in substrate recognition. Biochemistry 44:9574-80

    PubMed  Google Scholar 

  • Arndt JW, Chai Q, Christian T, Stevens RC (2006a) Structure of botulinum neurotoxin type D light chain at 1.65 a resolution: repercussions for vamp-2 substrate specificity. Biochemistry 45:3255-62

    Google Scholar 

  • Arni RK, Ward RJ (1996) Phospholipase A2-a structural review. Toxicon 34:827-41 Arnon SS (1980) Infant botulism. Annu Rev Med 31:541-60

    Google Scholar 

  • Ashton AC, Dolly JO (1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem 50:1808-16

    PubMed  Google Scholar 

  • Bagetta G, Nistico G (1994) Tetanus toxin as a neurobiological tool to study mechanisms of neuronal cell death in the mammalian brain. Pharmacol Ther 62:29-39

    PubMed  Google Scholar 

  • Bajjalieh SM, Peterson K, Shinghal R, Scheller RH (1992) SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257:1271-3

    PubMed  Google Scholar 

  • Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14:5223-35

    PubMed  Google Scholar 

  • Baldwin MR, Barbieri JT (2007) Association of botulinum neurotoxin serotypes a and b with synaptic vesicle protein complexes. Biochemistry 46:3200-10

    PubMed  Google Scholar 

  • Baldwin MR, Kim JP, Barbieri JT (2007) Botulinum neurotoxin b-host receptor recognition: it takes two receptors to tango. Nat Struct Mol Biol 14:9-10

    PubMed  Google Scholar 

  • Bambrick L, Gordon T (1994) Neurotoxins in the study of neural regulation of membrane proteins in skeletal muscle. J Pharmacol Toxicol Methods 32:129-38

    PubMed  Google Scholar 

  • Bartels F, Bergel H, Bigalke H, Frevert J, Halpern J et al. (1994) Specific antibodies against the Zn(2+)-binding domain of clostridial neurotoxins restore exocytosis in chromaffin cells treated with tetanus or botulinum a neurotoxin. J Biol Chem 269:8122-7

    PubMed  Google Scholar 

  • Berliocchi L, Fava E, Leist M, Horvat V, Dinsdale D et al. (2005) Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. J Cell Biol 168:607-18

    PubMed  Google Scholar 

  • Bhidayasiri R, Truong DD (2005) Expanding use of botulinum toxin. J Neurol Sci 235:1-9

    PubMed  Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol 316:244-51

    PubMed  Google Scholar 

  • Billante CR, Zealear DL, Billante M, Reyes JH, Sant’Anna G et al. (2002) Comparison of neuromuscular blockade and recovery with botulinum toxins A and F. Muscle Nerve 26:395-403

    PubMed  Google Scholar 

  • Binder WJ, Blitzer A (2003) Treatment of migraine headache with botulinum toxin type A. Facial Plast Surg Clin North Am 11:465-75

    PubMed  Google Scholar 

  • Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Arg(362) and tyr(365) of the botulinum neurotoxin type A light chain are involved in transition state stabilization. Biochemistry 41:1717-23

    PubMed  Google Scholar 

  • Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103:535-44

    PubMed  Google Scholar 

  • Bleck (1989) Clinical aspects of tetanus. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic Press, San Diego, CA, pp 379-98

    Google Scholar 

  • Bonanomi D, Pennuto M, Rigoni M, Rossetto O, Montecucco C et al. (2005) Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I with VAMP2. Mol Pharmacol 67:1901-8

    PubMed  Google Scholar 

  • Borodic GE, Ferrante R, Pearce LB, Smith K (1994) Histologic assessment of dose-related diffusion and muscle fiber response after therapeutic botulinum A toxin injections. Mov Disord 9:31-9

    PubMed  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925-9

    PubMed  Google Scholar 

  • Breidenbach MA, Brunger AT (2005a) 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry 44:7450-7

    Google Scholar 

  • Breidenbach MA, Brunger AT (2005b) New insights into clostridial neurotoxin-SNARE interactions. Trends Mol Med 11:377-81

    Google Scholar 

  • Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6:S146-68

    PubMed  Google Scholar 

  • Brin MF, Lew MF, Adler CH, Comella CL, Factor SA et al. (1999) Safety and efficacy of neurobloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 53:1431-38

    PubMed  Google Scholar 

  • Brisinda G, Bentivoglio AR, Maria G, Albanese A (2004) Treatment with botulinum neurotoxin of gastrointestinal smooth muscles and sphincters spasms. Mov Disord 19 Suppl 8:S146-56

    Google Scholar 

  • Brooks VB, Curtis DR, Eccles JC (1955) Mode of action of tetanus toxin. Nature 175:120-1

    PubMed  Google Scholar 

  • Bruns D, Engers S, Yang C, Ossig R, Jeromin A et al. (1997) Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of hirudo medicinalis. J Neurosci 17:1898-1910

    PubMed  Google Scholar 

  • Bullens RWM, O’Hanlon GM, Wagner E, Molenaar PC, Furukawa K et al. (2002) Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22:6876-84

    PubMed  Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the ph of membrane fusion. Nature 371:37-43

    PubMed  Google Scholar 

  • Burgen ASV, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109:10-24

    PubMed  Google Scholar 

  • Byrne MP, Smith LA (2000) Development of vaccines for prevention of botulism. Biochimie 82:955-66

    PubMed  Google Scholar 

  • Caccin P, Rigoni M, Bisceglie A, Rossetto O, Montecucco C (2006) Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Lett 580:6317-21

    PubMed  Google Scholar 

  • Carafoli E (1986) Mitochondrial pathology: an overview. Ann N Y Acad Sci 488:1-18

    PubMed  Google Scholar 

  • Caratsch CG, Maranda B, Miledi R, Strong PN (1981) A further study of the phospholipaseindependent action of beta-bungarotoxin at frog end-plates. J Physiol 319:179-91

    PubMed  Google Scholar 

  • Caratsch CG, Miledi R, Strong PN (1985) Influence of divalent cations on the phospholipaseindependent action of beta-bungarotoxin at frog neuromuscular junctions. J Physiol 363:169-79

    PubMed  Google Scholar 

  • Carredano E, Westerlund B, Persson B, Saarinen M, Ramaswamy S et al. (1998) The threedimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Toxicon 36:75-92

    PubMed  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1972) Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J Cell Biol 54:30-8

    PubMed  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA et al. (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444:1096-1100

    PubMed  Google Scholar 

  • Chang CC (1979) The action of the snake venoms and on nerve and muscle. In: Lee C (ed) Snake venoms. Springer, Berlin/Heidelberg/New York, pp 309-76

    Google Scholar 

  • Chang CC, Su MJ (1982) Presynaptic toxicity of the histidine-modified, phospholipase A2-inactive, beta-bungarotoxin, crotoxin and notexin. Toxicon 20:895-905

    PubMed  Google Scholar 

  • Chang CC, Huang MC, Lee CY (1973) Mutual antagonism between botulinum toxin and bungarotoxin. Nature 243:166-7

    PubMed  Google Scholar 

  • Chang CC, Lee JD, Eaker D, Fohlman J (1977) Short communications the presynaptic neuromuscular blocking action of taipoxin. A comparison with beta-bungarotoxin and crotoxin. Toxicon 15:571-6

    PubMed  Google Scholar 

  • Chen IL, Lee CY (1970) Ultrastructural changes in the motor nerve terminals caused by betabungarotoxin. Virchows Arch B Cell Pathol 6:318-25

    PubMed  Google Scholar 

  • Chen F, Kuziemko GM, Amersdorfer P, Wong C, Marks JD et al. (1997) Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect Immun 65:1626-30

    PubMed  Google Scholar 

  • Chen F, Kuziemko GM, Stevens RC (1998a) Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species. Infect Immun 66:2420-5

    Google Scholar 

  • Chen R, Karp BI, Hallett M (1998b) Botulinum toxin type F for treatment of dystonia: long-term experience. Neurology 51:1494-6

    Google Scholar 

  • Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281:10906-11

    PubMed  Google Scholar 

  • Chen S, Kim JP, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282:9621-27

    PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175-207

    PubMed  Google Scholar 

  • Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J (1997) An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol 136:81-93

    PubMed  Google Scholar 

  • Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite! J Cell Biol 175:201-7

    PubMed  Google Scholar 

  • Coen L, Osta R, Maury M, Br ûlet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci U S A 94:9400-5

    PubMed  Google Scholar 

  • Comella JX, Molgo J, Faille L (1993) Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions. Neurosci Lett 153:61-4

    PubMed  Google Scholar 

  • Connolly S, Trevett AJ, Nwokolo NC, Lalloo DG, Naraqi S et al. (1995) Neuromuscular effects of papuan taipan snake venom. Ann Neurol 38:916-20

    PubMed  Google Scholar 

  • Corradin G, Watts C (1995) Cellular immunology of tetanus toxoid. Curr Top Microbiol Immunol 195:77-87

    PubMed  Google Scholar 

  • Costantin L, Bozzi Y, Richichi C, Viegi A, Antonucci F et al. (2005) Antiepileptic effects of botulinum neurotoxin E. J Neurosci 25:1943-51

    PubMed  Google Scholar 

  • Couteaux R, P écot-Dechavassine M (1970) Synaptic vesicles and pouches at the level of “active zones” of the neuromuscular junction C R Acad Sci Hebd Seances Acad Sci D 271:2346-9

    Google Scholar 

  • Cremona O, De Camilli P (1997) Synaptic vesicle endocytosis. Curr Opin Neurobiol 7:323-30

    PubMed  Google Scholar 

  • Criado M, Gil A, Viniegra S, Guti érrez LM (1999) A single amino acid near the C terminus of the synaptosome associated protein of 25 kKa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc Natl Acad Sci U S A 96:7256-61

    PubMed  Google Scholar 

  • Critchley DR, Nelson PG, Habig WH, Fishman PH (1985) Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol 100:1499-1507

    PubMed  Google Scholar 

  • Cull-Candy SG, Fohlman J, Gustavsson D, L üllmann-Rauch R, Thesleff S (1976) The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience 1:175-80

    PubMed  Google Scholar 

  • Darios F, Davletov B (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440:813-17

    PubMed  Google Scholar 

  • Dasgupta B (1994) Structures of botulinum neurotoxin, its functional domains, and perspectives on the cristalline type a toxin. In: Jankovic J, Hallett M (eds) Therapy with botulinum toxin. Marcel Dekker, New York, pp 15-39

    Google Scholar 

  • de Paiva A, Poulain B, Lawrence GW, Shone CC, Tauc L et al. (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J Biol Chem 268:20838-44

    PubMed  Google Scholar 

  • de Paiva A, Meunier FA, Molg ó J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A 96:3200-5

    PubMed  Google Scholar 

  • Deinhardt K, Schiavo G (2005) Endocytosis and retrograde axonal traffic in motor neurons. Biochem Soc Symp :139-50

    Google Scholar 

  • Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G (2006) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174:459-71

    PubMed  Google Scholar 

  • Dixon RW, Harris JB (1999) Nerve terminal damage by beta-bungarotoxin: its clinical significance. Am J Pathol 154:447-55

    PubMed  Google Scholar 

  • Dobrenis K, Joseph A, Rattazzi MC (1992) Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc Natl Acad Sci U S A 89:2297-2301

    PubMed  Google Scholar 

  • Dodds DC, Omeis IA, Cushman SJ, Helms JA, Perin MS (1997) Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J Biol Chem 272:21488-94

    PubMed  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457-60

    PubMed  Google Scholar 

  • Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA et al. (2003) Synaptotagmins i and ii mediate entry of botulinum neurotoxin b into cells. J Cell Biol 162:1293-1303

    PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA et al. (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592-6

    PubMed  Google Scholar 

  • Dressler D, Bigalke H (2005) Botulinum toxin type B de novo therapy of cervical dystonia: frequency of antibody induced therapy failure. J Neurol 252:904-7

    PubMed  Google Scholar 

  • Dressler D, Eleopra R (2006) Clinical use of non-A botulinum toxins: botulinum toxin type B. Neurotox Res 9:121-5

    PubMed  Google Scholar 

  • Duchen LW (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 14:47-60

    PubMed  Google Scholar 

  • Dufton MJ, Hider RC (1983) Classification of phospholipases A2 according to sequence. evolutionary and pharmacological implications. Eur J Biochem 137:545-51

    PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224:91-4

    PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, De Grandis D, Montecucco C (1998a) Botulinum toxin serotype C treatment in subjects affected by focal dystonia and resistant to botulinum toxin serotype A Neurology 50 (Suppl. 4):A72

    Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998b) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135-8

    Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Gastaldo E, Rossetto O et al. (2002) Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol 113:1258-64

    PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C (2004) Different types of botulinum toxin in humans. Mov Disord 19 Suppl 8:S53-9

    Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C et al. (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127-31

    PubMed  Google Scholar 

  • Evans ER, Sutton JM, Gravett A, Shone CC (2005) Analysis of the substrate recognition domain determinants of botulinum type B toxin using phage display. Toxicon 46:446-53

    PubMed  Google Scholar 

  • Evans GJO, Morgan A, Burgoyne RD (2003) Tying everything together: the multiple roles of cysteine string protein (csp) in regulated exocytosis. Traffic 4:653-9

    PubMed  Google Scholar 

  • Faber K (1890) Die pathogenie des tetanus. Berl klin Wochenschr 27:717-20

    Google Scholar 

  • Fang H, Luo W, Henkel J, Barbieri J, Green N (2006) A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc Natl Acad Sci U S A 103:6958-63

    PubMed  Google Scholar 

  • Fern ández-Salas E, Ho H, Garay P, Steward LE, Aoki KR (2004) Is the light chain subcellular localization an important factor in botulinum toxin duration of action? Mov Disord 19 Suppl 8:S23-34

    Google Scholar 

  • Figueiredo DM, Hallewell RA, Chen LL, Fairweather NF, Dougan G et al. (1997) Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp Neurol 145:546-54

    PubMed  Google Scholar 

  • Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630-6

    PubMed  Google Scholar 

  • Foran PG, Davletov B, Meunier FA (2003a) Getting muscles moving again after botulinum toxin: novel therapeutic challenges. Trends Mol Med 9:291-9

    Google Scholar 

  • Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW et al. (2003b) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278:1363-71

    Google Scholar 

  • Francis JW, Hosler BA, Brown RHJ, Fishman PS (1995) CuZn superoxide dismutase (SOD-1):tetanus toxin fragment C hybrid protein for targeted delivery of SOD-1 to neuronal cells. J Biol Chem 270:15434-42

    PubMed  Google Scholar 

  • Frassoni C, Inverardi F, Coco S, Ortino B, Grumelli C et al. (2005) Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience 131:813-23

    PubMed  Google Scholar 

  • Fujinaga Y, Inoue K, Nomura T, Sasaki J, Marvaud JC et al. (2000) Identification and characterization of functional subunits of clostridium botulinum type a progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467:179-83

    PubMed  Google Scholar 

  • Fujita R, Fujinaga Y, Inoue K, Nakajima H, Kumon H et al. (1995) Molecular characterization of two forms of nontoxic-nonhemagglutinin components of clostridium botulinum type a progenitor toxins. FEBS Lett 376:41-4

    PubMed  Google Scholar 

  • Galazka A, Gasse F (1995) The present status of tetanus and tetanus vaccination. Curr Top Microbiol Immunol 195:31-53

    PubMed  Google Scholar 

  • Gill DM (1982) Bacterial toxins: a table of lethal amounts Microbiol. Rev. 46:86-94

    Google Scholar 

  • Giraudo CG, Hu C, You D, Slovic AM, Mosharov EV et al. (2005) SNAREs can promote complete fusion and hemifusion as alternative outcomes. J Cell Biol 170:249-60

    PubMed  Google Scholar 

  • Gopalakrishnakone P, Hawgood BJ (1984) Morphological changes induced by crotoxin in murine nerve and neuromuscular junction. Toxicon 22:791-804

    PubMed  Google Scholar 

  • Grubb BD, Harris JB, Schofield IS (1991) Neuromuscular transmission at newly formed neuromuscular junctions in the regenerating soleus muscle of the rat. J Physiol 441:405-21

    PubMed  Google Scholar 

  • Guti érrez JM, Theakston RDG, Warrell DA (2006) Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med 3:e150

    Google Scholar 

  • Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129:93-179

    PubMed  Google Scholar 

  • Habig WH, Bigalke H, Bergey GK, Neale EA, Hardegree MC et al. (1986) Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action. J Neurochem 47:930-7

    PubMed  Google Scholar 

  • Hamilton RC, Broad AJ, Sutherland SK (1980) Effects of australian eastern brown snake (pseudon-aja textilis) venom on the ultrastructure of nerve terminals on the rat diaphragm. Neurosci Lett 19:45-50

    PubMed  Google Scholar 

  • Hanley MR, Emson PC (1979) Neuronal degeneration induced by stereotaxic injection of betabungarotoxin into rat brain. Neurosci Lett 11:143-8

    PubMed  Google Scholar 

  • Hanna PA, Jankovic J, Vincent A (1999) Comparison of mouse bioassay and immunoprecipitation assay for botulinum toxin antibodies. J Neurol Neurosurg Psychiatry 66:612-16

    PubMed  Google Scholar 

  • Hanson MA, Stevens RC (2000) Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nat Struct Biol 7:687-92

    PubMed  Google Scholar 

  • Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479-84

    PubMed  Google Scholar 

  • Harris JB (1997) Toxic phospholipases in snake venom: an introductory review. Symp. zool. Soc. Lond. 70:235-50

    Google Scholar 

  • Harris JB, Grubb BD, Maltin CA, Dixon R (2000) The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. Exp Neurol 161:517-26

    PubMed  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K et al. (2003) Cellular uptake of clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284-91

    PubMed  Google Scholar 

  • Hauschild A (1993) Epidemiology of human foodborne botulism. In: Hauschild A, Dodds KL (eds) Clostridium botulinum: ecology and control in foods. Marcel Dekker, Inc. New York, pp 69-104

    Google Scholar 

  • Heckly RJ, Hildebrand GJ, Lamanna C (1960) On the size of the toxic particle passing the intestinal barrier in botulism. J Exp Med 111:745-59

    PubMed  Google Scholar 

  • Henderson I, Davis T, Elmore M, Minton N (1997) The genetic basis of toxin production in clostridium botulinum and clostridium tetani. In: Rood I (ed) The clostridia: molecular biology and pathogenesis. Academic Press, New York, pp 261-94

    Google Scholar 

  • Herreros J, Schiavo G (2002) Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. Int J Med Microbiol 291:447-53

    PubMed  Google Scholar 

  • Herreros J, Lalli G, Montecucco C, Schiavo G (2000) Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74:1941-50

    PubMed  Google Scholar 

  • Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12:2947-60

    PubMed  Google Scholar 

  • Hodgson WC, Wickramaratna JC (2002) In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol 29:807-14

    PubMed  Google Scholar 

  • Hodgson WC, Wickramaratna JC (2006) Snake venoms and their toxins: an australian perspective. Toxicon 48:931-40

    PubMed  Google Scholar 

  • Howard BD, Gundersen CBJ (1980) Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol Toxicol 20:307-36

    PubMed  Google Scholar 

  • Huang X, Wheeler MB, Kang YH, Sheu L, Lukacs GL et al. (1998) Truncated SNAP-25 (1-197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol 12:1060-70

    PubMed  Google Scholar 

  • Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by cl. botulinum type a toxin. J Physiol 160:221-33

    PubMed  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427-46

    PubMed  Google Scholar 

  • Iezzi M, Theander S, Janz R, Loze C, Wollheim CB (2005) SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment. J Cell Sci 118:5647-60

    PubMed  Google Scholar 

  • Igarashi M, Kozaki S, Terakawa S, Kawano S, Ide C et al. (1996) Growth cone collapse and inhibition of neurite growth by botulinum neurotoxin C1: a t-SNARE is involved in axonal growth. J Cell Biol 134:205-15

    PubMed  Google Scholar 

  • Inoue K, Fujinaga Y, Watanabe T, Ohyama T, Takeshi K et al. (1996) Molecular composition of clostridium botulinum type a progenitor toxins. Infect Immun 64:1589-94

    PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631-43

    PubMed  Google Scholar 

  • Jahn R, Lang T, S üdhof TC (2003) Membrane fusion. Cell 112:519-33

    Google Scholar 

  • Jankovic J (2006) Botulinum toxin therapy for cervical dystonia. Neurotox Res 9:145-8

    PubMed  Google Scholar 

  • Jankovic J, Schwartz K (1995) Response and immunoresistance to botulinum toxin injections. Neurology 45:1743-6

    PubMed  Google Scholar 

  • Janz R, S üdhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94:1279-90

    PubMed  Google Scholar 

  • Jiang K, Watson DJ, Wolfe JH (2005) A genetic fusion construct between the tetanus toxin C fragment and the lysosomal acid hydrolase beta-glucuronidase expresses a bifunctional protein with enhanced secretion and neuronal uptake. J Neurochem 93:1334-44

    PubMed  Google Scholar 

  • Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin b recognizes its protein receptor with high affinity and specificity. Nature 444:1092-5

    PubMed  Google Scholar 

  • Jurasinski CV, Lieth E, Dang Do AN, Schengrund CL (2001) Correlation of cleavage of SNAP-25 with muscle function in a rat model of botulinum neurotoxin type A induced paralysis. Toxicon 39:1309-15

    PubMed  Google Scholar 

  • Juzans P, Molgo J, Faille L, Angaut-Petit D (1996) Synaptotagmin II immunoreactivity in normal and botulinum type A treated mouse motor nerve terminals. Pflugers Arch 431:R283-4

    PubMed  Google Scholar 

  • Kamenskaya MA, Thesleff S (1974) The neuromuscular blocking action of an isolated toxin from the elapid (oxyuranus scutellactus). Acta Physiol Scand 90:716-24

    PubMed  Google Scholar 

  • Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34:11928-37

    PubMed  Google Scholar 

  • Kandel E, Schwartz J, Jessel T (2000) Principles of neural science, 4th edn. McGrawHill, USA

    Google Scholar 

  • Kang H, Tian L, Thompson W (2003) Terminal schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol 32:975-85

    PubMed  Google Scholar 

  • Kauffman JA, Way JFJ, Siegel LS, Sellin LC (1985) Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol Appl Pharmacol 79:211-17

    PubMed  Google Scholar 

  • Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137-42

    PubMed  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526-32

    PubMed  Google Scholar 

  • Kelly RB, von Wedel RJ, Strong PN (1979) Phospholipase-dependent and phospholipaseindependent inhibition of transmitter relase by beta-bungarotoxin. Adv Cytopharmacol 3:77-85

    PubMed  Google Scholar 

  • Kerner (1817) Vergiftung durch verborbene W ürste. Tübinger Blatter 3:1-25

    Google Scholar 

  • Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67-76

    PubMed  Google Scholar 

  • Kini RM (1997) Venom phospholipase a2 enzymes. John Wiley & Sons, Chichester

    Google Scholar 

  • Kini RM, Evans HJ (1989) A model to explain the pharmacological effects of snake venom phospholipases a2. Toxicon 27:613-35

    PubMed  Google Scholar 

  • Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS (2000) Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associated calcium-binding protein 49 via NP1 and NP2. J Biol Chem 275:17786-92

    PubMed  Google Scholar 

  • Kitamura M, Igimi S, Furukawa K, Furukawa K (2005) Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741:1-3

    PubMed  Google Scholar 

  • Kondo K, Toda H, Narita K (1978) Characterization of phospholipase A activity of beta1-bungarotoxin from bungarus multicinctus venom. II. identification of the histidine residue of beta1-bungarotoxin modified by p-bromophenacyl bromide. J Biochem (Tokyo) 84:1301-8

    Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13-18

    PubMed  Google Scholar 

  • Kozlov MM, Markin VS (1983) Possible mechanism of membrane fusion Biofizika 28:242-7

    Google Scholar 

  • Krieglstein KG, Henschen AH, Weller U, Habermann E (1991) Limited proteolysis of tetanus toxin. relation to activity and identification of cleavage sites. Eur J Biochem 202:41-51

    PubMed  Google Scholar 

  • Kularatne SAM (2002) Common krait (bungarus caeruleus) bite in anuradhapura, sri lanka: a prospective clinical study, 1996-98. Postgrad Med J 78:276-80

    PubMed  Google Scholar 

  • Kwong PD, McDonald NQ, Sigler PB, Hendrickson WA (1995) Structure of beta 2-bungarotoxin: potassium channel binding by kunitz modules and targeted phospholipase action. Structure 3:1109-19

    PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type a and implications for toxicity. Nat Struct Biol 5:898-902

    PubMed  Google Scholar 

  • Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431-7

    PubMed  Google Scholar 

  • Lambeau G, Lazdunski M (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 20:162-70

    PubMed  Google Scholar 

  • Lambeau G, Barhanin J, Schweitz H, Qar J, Lazdunski M (1989) Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. J Biol Chem 264:11503-510

    PubMed  Google Scholar 

  • Lee CY, Chang CC, Chen YM (1972) Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. Taiwan Yi Xue Hui Za Zhi 71:344-9

    PubMed  Google Scholar 

  • Lee CY, Tsai MC, Chen YM, Ritonja A, Gubensek F (1984) Mode of neuromuscular blocking action of toxic phospholipases A2 from vipera ammodytes venom. Arch Int Pharmacodyn Ther 268:313-24

    PubMed  Google Scholar 

  • Leung YM, Xion Y, Ou YJ, Kwan CY (1998) Perturbation by lysophosphatidylcholine of membrane permeability in cultured vascular smooth muscle and endothelial cells. Life Sci 63:965-73

    PubMed  Google Scholar 

  • Lew MF, Adornato BT, Duane DD, Dykstra DD, Factor SA et al. (1997) Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology 49:701-7

    PubMed  Google Scholar 

  • Li JY, Jahn R, Dahlstr öm A (1994) Synaptotagmin I is present mainly in autonomic and sensory neurons of the rat peripheral nervous system. Neuroscience 63:837-50

    PubMed  Google Scholar 

  • Li L, Binz T, Niemann H, Singh BR (2000) Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry 39:2399-2405

    PubMed  Google Scholar 

  • Ludlow CL, Hallett M, Rhew K, Cole R, Shimizu T et al. (1992) Therapeutic use of type F botulinum toxin. N Engl J Med 326:349-50

    PubMed  Google Scholar 

  • Luvisetto S, Rossetto O, Montecucco C, Pavone F (2003) Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon 41:475-81

    PubMed  Google Scholar 

  • Luvisetto S, Marinelli S, Lucchetti F, Marchi F, Cobianchi S et al. (2006) Botulinum neurotoxins and formalin-induced pain: central vs. peripheral effects in mice. Brain Res 1082:124-31

    PubMed  Google Scholar 

  • Luvisetto S, Marinelli S, Cobianchi S, Pavone F (2007) Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 145:1-4

    PubMed  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011-14

    PubMed  Google Scholar 

  • Maksymowych AB, Reinhard M, Malizio CJ, Goodnough MC, Johnson EA et al. (1999) Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67:4708-12

    PubMed  Google Scholar 

  • Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273:21950-7

    PubMed  Google Scholar 

  • Marqu èze B, Boudier JA, Mizuta M, Inagaki N, Seino S et al. (1995) Cellular localization of synaptotagmin i, ii, and iii mrnas in the central nervous system and pituitary and adrenal glands of the rat. J Neurosci 15:4906-17

    Google Scholar 

  • Marxen P, Bigalke H (1991) Tetanus and botulinum A toxins inhibit stimulated F-actin rearrangement in chromaffin cells. Neuroreport 2:33-6

    PubMed  Google Scholar 

  • Matteoli M, Verderio C, Rossetto O, Iezzi N, Coco S et al. (1996) Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A 93:13310-15

    PubMed  Google Scholar 

  • Megighian A, Rigoni M, Caccin P, Zordan MA, Montecucco C (2007) A lysolecithin/fatty acid mixture promotes and then blocks neurotransmitter release at the drosophila melanogaster larval neuromuscular junction. Neurosci Lett 416:6-11

    PubMed  Google Scholar 

  • Meunier FA, Schiavo G, Molg ó J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105-13

    PubMed  Google Scholar 

  • Meunier FA, Lisk G, Sesardic D, Dolly JO (2003) Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 22:454-66

    PubMed  Google Scholar 

  • Mezaki T, Kaji R, Kohara N, Fujii H, Katayama M et al. (1995) Comparison of therapeutic efficacies of type A and F botulinum toxins for blepharospasm: a double-blind, controlled study. Neurology 45:506-8

    PubMed  Google Scholar 

  • Middlebrook JL, Brown JE (1995) Immunodiagnosis and immunotherapy of tetanus and botulinum neurotoxins. Curr Top Microbiol Immunol 195:89-122

    PubMed  Google Scholar 

  • Midura TF, Arnon SS (1976) Infant botulism. identification of clostridium botulinum and its toxins in faeces. Lancet 2:934-6

    PubMed  Google Scholar 

  • Minton NP (1995) Molecular genetics of clostridial neurotoxins. Curr Top Microbiol Immunol 195:161-94

    PubMed  Google Scholar 

  • Molg ó J, Siegel LS, Tabti N, Thesleff S (1989) A study of synchronization of quantal transmitter release from mammalian motor endings by the use of botulinal toxins type A and D. J Physiol 411:195-205

    Google Scholar 

  • Montecucco C, Molg ó J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274-9

    PubMed  Google Scholar 

  • Montecucco C, Rossetto O (2000) How do presynaptic PLA2 neurotoxins block nerve terminals? Trends Biochem Sci 25:266-70

    PubMed  Google Scholar 

  • Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423-72

    PubMed  Google Scholar 

  • Montecucco C, Schiavo G, Dasgupta BR (1989) Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J 259:47-53

    PubMed  Google Scholar 

  • Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92-8

    PubMed  Google Scholar 

  • Montecucco C, Schiavo G, Tugnoli V, de Grandis D (1996) Botulinum neurotoxins: mechanism of action and therapeutic applications. Mol Med Today 2:418-24

    PubMed  Google Scholar 

  • Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12:442-6

    PubMed  Google Scholar 

  • Montecucco C, Schiavo G, Pantano S (2005) SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 30:367-72

    PubMed  Google Scholar 

  • Morbiato L, Carli L, Johnson E, Montecucco C, Molgo J et al. (2007) Neuromuscular paralysis and recovery in mice injected with botulinum toxin A and C Eur J Neurosci 25:2697-704

    PubMed  Google Scholar 

  • Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B et al. (2001) High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 289:623-9

    PubMed  Google Scholar 

  • Naumann M, Jost W (2004) Botulinum toxin treatment of secretory disorders. Mov Disord 19 Suppl 8:S137-41

    Google Scholar 

  • Neco P, Rossetto O, Gil A, Montecucco C, Guti érrez LM (2003) Taipoxin induces F-actin fragmentation and enhances release of catecholamines in bovine chromaffin cells. J Neurochem 85:329-37

    PubMed  Google Scholar 

  • Niemann H (1991) Molecular biology of clostridial neurotoxins. In: Alouf J, Freer J (eds) A sourcebook of bacterial protein toxins. Academic Press, London, pp 303-48

    Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A et al. (1996) The high-affinity binding of clostridium botulinum type b neurotoxin to synaptotagmin ii associated with gangliosides gt1b/gd1a. FEBS Lett 378:253-7

    PubMed  Google Scholar 

  • O’Sullivan G, Mohammed N, Foran P, Lawrence G, Dolly O (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J Biol Chem 274:36897-904

    PubMed  Google Scholar 

  • Oberg SG, Kelly RB (1976) The mechanism of beta-bungarotoxin action. I. modification of transmitter release at the neuromuscular junction. J Neurobiol 7:129-41

    PubMed  Google Scholar 

  • Ohishi I, Sugii S, Sakaguchi G (1977) Oral toxicities of clostridium botulinum toxins in response to molecular size. Infect Immun 16:107-9

    PubMed  Google Scholar 

  • Ong W, Jiang B, Tang N, Ling S, Yeo J et al. (2006) Differential effects of polyunsaturated fatty acids on membrane capacitance and exocytosis in rat pheochromocytoma-12 cells. Neurochem Res 31:41-8

    PubMed  Google Scholar 

  • Osen-Sand A, Staple JK, Naldi E, Schiavo G, Rossetto O et al. (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367:222-34

    PubMed  Google Scholar 

  • Othman IB, Spokes JW, Dolly JO (1982) Preparation of neurotoxic 3H-beta-bungarotoxin: demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur J Biochem 128:267-76

    PubMed  Google Scholar 

  • Pearson JA, Tyler MI, Retson KV, Howden ME (1993) Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the australian common brown snake (pseudonaja textilis). 3. the complete amino-acid sequences of all the subunits. Biochem Biophys Acta 1161:223-9

    PubMed  Google Scholar 

  • Pellizzari R, Rossetto O, Lozzi L, Giovedi’ S, Johnson E et al. (1996) Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem 271:20353-8

    PubMed  Google Scholar 

  • Pellizzari R, Mason S, Shone CC, Montecucco C (1997) The interaction of synaptic vesicleassociated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett 409:339-42

    PubMed  Google Scholar 

  • Petrovic U, Sribar J, Paris A, Rupnik M, Krzan M et al. (2004) Ammodytoxin, a neurotoxic secreted phospholipase A(2), can act in the cytosol of the nerve cell. Biochem Biophys Res Commun 324:981-5

    PubMed  Google Scholar 

  • Pickett J, Berg B, Chaplin E, Brunstetter-Shafer MA (1976) Syndrome of botulism in infancy: clinical and electrophysiologic study. N Engl J Med 295:770-2

    PubMed  Google Scholar 

  • Prasarnpun S, Walsh J, Harris JB (2004) Beta-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction. Neuropharmacology 47:304-14

    PubMed  Google Scholar 

  • Prasarnpun S, Walsh J, Awad SS, Harris JB (2005) Envenoming bites by kraits: the biological basis of treatment-resistant neuromuscular paralysis. Brain 128:2987-96

    PubMed  Google Scholar 

  • Puhar A, Johnson EA, Rossetto O, Montecucco C (2004) Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun 319:66-71

    PubMed  Google Scholar 

  • Pumplin DW, Reese TS (1977) Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J Physiol 273:443-57

    PubMed  Google Scholar 

  • Raciborska DA, Charlton MP (1999) Retention of cleaved synaptosome-associated protein of 25 kDa (SNAP-25) in neuromuscular junctions: a new hypothesis to explain persistence of botulinum A poisoning. Can J Physiol Pharmacol 77:679-88

    PubMed  Google Scholar 

  • Raciborska DA, Trimble WS, Charlton MP (1998) Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction. Eur J Neurosci 10:2617-28

    PubMed  Google Scholar 

  • Ramon G, Descombey P (1925) Sur l’immunization antitetanique et sur la production de l’antitoxine tetanique Compt Rend Soc Biol 93:508-98

    Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME et al. (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139-50

    PubMed  Google Scholar 

  • Reese C, Mayer A (2005) Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J Cell Biol 171:981-90

    PubMed  Google Scholar 

  • Rehm H, Betz H (1982) Binding of beta-bungarotoxin to synaptic membrane fractions of chick brain. J Biol Chem 257:10015-22

    PubMed  Google Scholar 

  • Reilich P, Fheodoroff K, Kern U, Mense S, Seddigh S et al. (2004) Consensus statement: botulinum toxin in myofascial [corrected] pain. J Neurol 251 Suppl 1:I36-8

    Google Scholar 

  • Rickman C, Davletov B (2005) Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol 12:545-53

    PubMed  Google Scholar 

  • Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288:1231-7

    PubMed  Google Scholar 

  • Rigoni M, Schiavo G, Weston AE, Caccin P, Allegrini F et al. (2004) Snake presynaptic neurotoxins with phospholipase a2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. J Cell Sci 117:3561-70

    PubMed  Google Scholar 

  • Rigoni M, Caccin P, Gschmeissner S, Koster G, Postle AD et al. (2005) Equivalent effects of snake pla2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310:1678-80

    PubMed  Google Scholar 

  • Rigoni M, Pizzo P, Schiavo G, Weston AE, Zatti G et al. (2007) Calcium influx and mitochondrial alterations at synapses exposed to snake neurotoxins or their phospholipid hydrolysis products. J Biol Chem 282:11238-45

    PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57-69

    PubMed  Google Scholar 

  • Rossetto O, Montecucco C (2004) Clostridial neurotoxins. In: Proft C (ed) Microbial toxins. molecular and cellular biology. Horizon Scientific Press, Norfolk, UK, pp 149-78

    Google Scholar 

  • Rossetto O, Montecucco C (2007) Peculiar binding of botulinum neurotoxins. ACS Chem Biol 2:96-8

    PubMed  Google Scholar 

  • Rossetto O, Schiavo G, Montecucco C, Poulain B, Deloye F et al. (1994) Snare motif and neurotoxins. Nature 372:415-16

    PubMed  Google Scholar 

  • Rossetto O, Caccin P, Rigoni M, Tonello F, Bortoletto N et al. (2001a) Active-site mutagenesis of tetanus neurotoxin implicates tyr-375 and glu-271 in metalloproteolytic activity. Toxicon 39:1151-9

    Google Scholar 

  • Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C (2001b) Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39:27-41

    Google Scholar 

  • Rossetto O, Morbiato L, Rossetto et al. 2006 Caccin P, Rigoni M, Montecucco C (2006) Presynaptic enzymatic neurotoxins. J Neurochem 97:1534-45

    PubMed  Google Scholar 

  • Roux S, Colasante C, Saint Cloment C, Barbier J, Curie T et al. (2005) Internalization of a GFPtetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol Cell Neurosci 30:572-82

    PubMed  Google Scholar 

  • Rowan EG (2001) What does beta-bungarotoxin do at the neuromuscular junction? Toxicon 39:107-18

    PubMed  Google Scholar 

  • Rugolo M, Dolly JO, Nicholls DG (1986) The mechanism of action of beta-bungarotoxin at the presynaptic plasma membrane. Biochem J 233:519-23

    PubMed  Google Scholar 

  • Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326:835-47

    PubMed  Google Scholar 

  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004a) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865-70

    Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004b) The HCC -domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631-43

    Google Scholar 

  • Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A et al. (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104:359-64

    PubMed  Google Scholar 

  • Sakaguchi G (1982) Clostridium botulinum toxins. Pharmacol Ther 19:165-94

    PubMed  Google Scholar 

  • Sankhla C, Jankovic J, Duane D (1998) Variability of the immunologic and clinical response in dystonic patients immunoresistant to botulinum toxin injections. Mov Disord 13:150-54

    PubMed  Google Scholar 

  • Schantz EJ, Johnson EA (1997) Botulinum toxin: the story of its development for the treatment of human disease. Perspect Biol Med 40:317-27

    PubMed  Google Scholar 

  • Schiavo G (2006) Structural biology: dangerous liaisons on neurons. Nature 444:1019-20

    PubMed  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717-66

    PubMed  Google Scholar 

  • Schiavo G, Papini E, Genna G, Montecucco C (1990) An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun 58:4136-41

    PubMed  Google Scholar 

  • Scott AB, Magoon EH, McNeer KW, Stager DR (1989) Botulinum treatment of strabismus in children. Trans Am Ophthalmol Soc 87:174-180; discussion 180-4

    PubMed  Google Scholar 

  • Scott D (1997) Phospholipase A2: structure and catalytic properties. In: Kini R (ed) Venom phospholipase A2 enzymes: structure, function and mechanism. John Wiley & Sons, Chichester, p 97-128.

    Google Scholar 

  • Segelke B, Knapp M, Kadkhodayan S, Balhorn R, Rupp B (2004) Crystal structure of clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc Natl Acad Sci U S A 101:6888-93

    PubMed  Google Scholar 

  • Sellin LC, Kauffman JA, Dasgupta BR (1983) Comparison of the effects of botulinum neurotoxin types A and E at the rat neuromuscular junction. Med Biol 61:120-5

    PubMed  Google Scholar 

  • Sheridan RE (1998) Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. Toxicon 36:703-17

    PubMed  Google Scholar 

  • Shone CC, Hambleton P, Melling J (1987) A 50-kDa fragment from the NH2-terminus of the heavy subunit of clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 167:175-80

    PubMed  Google Scholar 

  • Simpson LL (2000) Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs. Biochimie 82:943-53

    PubMed  Google Scholar 

  • Simpson LL, Lautenslager GT, Kaiser II, Middlebrook JL (1993) Identification of the site at which phospholipase A2 neurotoxins localize to produce their neuromuscular blocking effects. Toxicon 31:13-26

    PubMed  Google Scholar 

  • Simpson LL, Coffield JA, Bakry N (1994) Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269:256-62

    PubMed  Google Scholar 

  • Simpson LL, Maksymowych AB, Park J, Bora RS (2004) The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin. J Pharmacol Exp Ther 308:857-64

    PubMed  Google Scholar 

  • Singh G, Gourinath S, Sharma S, Paramasivam M, Srinivasan A et al. (2001) Sequence and crystal structure determination of a basic phospholipase A2 from common krait (bungarus caeruleus) at 2.4 A resolution: identification and characterization of its pharmacological sites. J Mol Biol 307:1049-59

    PubMed  Google Scholar 

  • Sloop RR, Cole BA, Escutin RO (1997) Human response to botulinum toxin injection: type B compared with type A. Neurology 49:189-94

    PubMed  Google Scholar 

  • Smith L, Sugiyama D (1988) Botulism: the organism, its toxins, the disease. Charles C Thomas Publisher, Springfield, IL

    Google Scholar 

  • Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R et al. (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73:5450-7

    PubMed  Google Scholar 

  • Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125-32

    PubMed  Google Scholar 

  • Sribar J, Copic A, Paris A, Sherman NE, Gubensek F et al. (2001) A high affinity acceptor for phospholipase A2 with neurotoxic activity is a calmodulin. J Biol Chem 276:12493-6

    PubMed  Google Scholar 

  • Sribar J, Copic A, Poljsak-Prijatelj M, Kuret J, Logonder U et al. (2003a) R25 is an intracellular membrane receptor for a snake venom secretory phospholipase A(2). FEBS Lett 553:309-14

    Google Scholar 

  • Sribar J, Sherman NE, Prijatelj P, Faure G, Gubensek F et al. (2003b) The neurotoxic phospholipase A2 associates, through a non-phosphorylated binding motif, with 14-3-3 protein gamma and epsilon isoforms. Biochem Biophys Res Commun 302:691-6

    Google Scholar 

  • Strong PN, Goerke J, Oberg SG, Kelly RB (1976) Beta-bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci U S A 73:178-82

    PubMed  Google Scholar 

  • Strong PN, Heuser JE, Kelly RB (1977) Selective enzymatic hydrolysis of nerve terminal phospholipids by beta-bungarotoxin: biochemical and morphological studies. Prog Clin Biol Res 15:227-49

    PubMed  Google Scholar 

  • Strong PN, Kelly RB (1977) Membranes undergoing phase transitions are preferentially hydrolyzed by beta-bungarotoxin. Biochim Biophys Acta 469:231-35

    PubMed  Google Scholar 

  • S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509-47

    Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of clostridium botulinum neurotoxin b. Nat Struct Biol 7:693-9

    PubMed  Google Scholar 

  • Sycha T, Kranz G, Auff E, Schnider P (2004) Botulinum toxin in the treatment of rare head and neck pain syndromes: a systematic review of the literature. J Neurol 251 Suppl 1:119-30

    Google Scholar 

  • Tacket C, Rogawski M (1989) Botulism. In: Simpson L. L (ed) Botulinum neurotoxins and tetanus toxin. Academic Press, San Diego, pp 351-78

    Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M et al. (2006) Molecular anatomy of a trafficking organelle. Cell 127:831-46

    PubMed  Google Scholar 

  • Theakston RD, Phillips RE, Warrell DA, Galagedera Y, Abeysekera DT et al. (1990) Envenoming by the common krait (bungarus caeruleus) and sri lankan cobra (naja naja naja): efficacy and complications of therapy with haffkine antivenom. Trans R Soc Trop Med Hyg 84:301-8

    PubMed  Google Scholar 

  • Thesleff S (1960) Supersensitivity of skeletal muscle produced by botulinum toxin. J Physiol 151:598-607

    PubMed  Google Scholar 

  • Tizzoni G, Cattani G (1890) Uber das tetanusgift Zentralbl Bakt 8:69-73

    Google Scholar 

  • Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH et al. (1995) Electrophysiological findings in patients envenomed following the bite of a papuan taipan (oxyuranus scutellatus canni). Trans R Soc Trop Med Hyg 89:415-17

    PubMed  Google Scholar 

  • Truong DD, Jost WH (2006) Botulinum toxin: clinical use. Parkinsonism Relat Disord 12:331-55

    PubMed  Google Scholar 

  • Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H et al. (2005) Binding of clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280:35164-71

    PubMed  Google Scholar 

  • Umland TC, Wingert LM, Swaminathan S, Furey WF, Schmidt JJ et al. (1997) Structure of the receptor binding fragment hc of tetanus neurotoxin. Nat Struct Biol 4:788-92

    PubMed  Google Scholar 

  • Vaidyanathan VV, Yoshino K, Jahnz M, D örries C, Bade S et al. (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327-37

    PubMed  Google Scholar 

  • Van Ermengem E (1897) Uber ein neuenanaeroben bacillus und seine beziehungen zum botulismus. Z Hyg Infektkr 26:1-56

    Google Scholar 

  • Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U et al. (2004) SNAP-25 modulation of calcium dynamics underlies differences in gabaergic and glutamatergic responsiveness to depolarization. Neuron 41:599-610

    PubMed  Google Scholar 

  • Verderio C, Rossetto O, Grumelli C, Frassoni C, Montecucco C et al. (2006) Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep 7:995-9

    PubMed  Google Scholar 

  • Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S et al. (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142-53

    PubMed  Google Scholar 

  • Wagner GM, Mart PE, Kelly RB (1974) Beta-bungarotoxin inhibition of calcium accumulation by rat brain mitochondria. Biochem Biophys Res Commun 58:475-81

    PubMed  Google Scholar 

  • Warrell DA, Looareesuwan S, White NJ, Theakston RD, Warrell MJ et al. (1983) Severe neurotoxic envenoming by the malayan krait bungarus candidus (linnaeus): response to antivenom and anticholinesterase. Br Med J (Clin Res Ed) 286:678-80

    Google Scholar 

  • Washbourne P, Pellizzari R, Baldini G, Wilson MC, Montecucco C (1997) Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett 418:1-5

    PubMed  Google Scholar 

  • Wei S, Ong WY, Thwin MM, Fong CW, Farooqui AA et al. (2003) Group IIa secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 121:891-8

    PubMed  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from hiv-1 gp41. Nature 387:426-30

    PubMed  Google Scholar 

  • Wernicke JF, Vanker AD, Howard BD (1975) The mechanism of action of beta-bungarotoxin. J Neurochem 25:483-96

    PubMed  Google Scholar 

  • Westerlund B, Nordlund P, Uhlin U, Eaker D, Eklund H (1992) The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 A resolution. FEBS Lett 301:159-64

    PubMed  Google Scholar 

  • Williamson LC, Neale EA (1994) Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J Neurochem 63:2342-5

    PubMed  Google Scholar 

  • Williamson LC, Neale EA (1998) Syntaxin and 25-kDa synaptosomal-associated protein: differential effects of botulinum neurotoxins C1 and A on neuronal survival. J Neurosci Res 52:569-83

    PubMed  Google Scholar 

  • Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotox-ins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomalassociated protein of 25 kDa. J Biol Chem 271:7694-9

    PubMed  Google Scholar 

  • Wilson HI, Nicholson GM, Tyler MI, Howden ME (1995) Induction of giant miniature end-plate potentials during blockade of neuromuscular transmission by textilotoxin. Naunyn Schmiedebergs Arch Pharmacol 352:79-87

    PubMed  Google Scholar 

  • Wilson-Ashworth HA, Judd AM, Law RM, Freestone BD, Taylor S et al. (2004) Formation of transient non-protein calcium pores by lysophospholipids in S49 lymphoma cells. J Membr Biol 200:25-33

    PubMed  Google Scholar 

  • Wojtczak L, Sch önfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41-57

    PubMed  Google Scholar 

  • Woodley SL, Ikenouchi H, Barry WH (1991) Lysophosphatidylcholine increases cytosolic calcium in ventricular myocytes by direct action on the sarcolemma. J Mol Cell Cardiol 23:671-80

    PubMed  Google Scholar 

  • Xu Y, Zhang F, Su Z, McNew JA, Shin Y (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12:417-22

    PubMed  Google Scholar 

  • Yamasaki S, Hu Y, Binz T, Kalkuhl A, Kurazono H et al. (1994) Synaptobrevin/vesicle-associated membrane protein (VAMP) of aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A 91:4688-92

    PubMed  Google Scholar 

  • Yang C (1997) Chemical modification and functional sites of phospholipases A2. In: Kini R (ed) Venom phospholipase A2 enzymes: structure, function and mechanism. Wiley & Sons, Chichester, pp 185-204

    Google Scholar 

  • Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci U S A103:19731-6.

    Google Scholar 

  • Yowler BC, Schengrund C (2004) Glycosphingolipids-sweets for botulinum neurotoxin. Glycoconj J 21:287-93

    PubMed  Google Scholar 

  • Yowler BC, Kensinger RD, Schengrund C (2002) Botulinum neurotoxin a activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277:32815-19

    PubMed  Google Scholar 

  • Zimmerberg J, Chernomordik LV (2005) Neuroscience. Synaptic membranes bend to the will of a neurotoxin. Science 310:1626-7

    PubMed  Google Scholar 

  • Zinsmaier KE, Bronk P (2001) Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem Pharmacol 62:1-11

    PubMed  Google Scholar 

  • Zuber M, Sebald M, Bathien N, de Recondo J, Rondot P (1993) Botulinum antibodies in dystonic patients treated with type A botulinum toxin: frequency and significance. Neurology 43:1715-18

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rossetto, O., Montecucco, C. (2008). Presynaptic Neurotoxins with Enzymatic Activities. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_6

Download citation

Publish with us

Policies and ethics