Skip to main content

Spatial Information Extraction for Cognitive Mapping with a Mobile Robot

  • Conference paper
Spatial Information Theory (COSIT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4736))

Included in the following conference series:

Abstract

When animals (including humans) first explore a new environment, what they remember is fragmentary knowledge about the places visited. Yet, they have to use such fragmentary knowledge to find their way home. Humans naturally use more powerful heuristics while lower animals have shown to develop a variety of methods that tend to utilize two key pieces of information, namely distance and orientation information. Their methods differ depending on how they sense their environment. Could a mobile robot be used to investigate the nature of such a process, commonly referred to in the psychological literature as cognitive mapping? What might be computed in the initial explorations and how is the resulting “cognitive map” be used for localization? In this paper, we present an approach using a mobile robot to generate a “cognitive map”, the main focus being on experiments conducted in large spaces that the robot cannot apprehend at once due to the very limited range of its sensors. The robot computes a “cognitive map” and uses distance and orientation information for localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tolman, E.C.: Cognitive Maps in Rats and Men. Psychological Review 55(4), 189–208 (1948)

    Article  Google Scholar 

  2. Golledge, R.G.: Human wayfinding and cognitive maps. In: Golledge, R.G. (ed.) Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, John Hopkins University Press, Baltimore (1999)

    Google Scholar 

  3. Poucet, B.: Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review 100, 163–182 (1993)

    Article  Google Scholar 

  4. Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science 19(1), 1–51 (1995)

    Article  Google Scholar 

  5. Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  Google Scholar 

  6. Yeap, W.K., Jefferies, M.E.: Computing a Representation of the Local Environment. Artificial Intelligence 107(2), 265–301 (1999)

    Article  MATH  Google Scholar 

  7. Estrada, C., Neira, J., Tardos, J.D.: Hierarchical SLAM: Real-Time Accurate Mapping of Large Environments. IEEE Trans. on Robotics 21(4), 588–596 (2005)

    Article  Google Scholar 

  8. Piers, D.M., Kuipers, B.J.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–227 (1997)

    Article  Google Scholar 

  9. Kortenkamp, D.: Cognitive Maps for Mobile Robots: A Representation for Mapping and Navigation. PhD thesis, University of Michigan (1993)

    Google Scholar 

  10. Jefferies, M., Weng, W., Baker, J.T., Mayo, M.: Using context to solve the correspondence problem in simultaneous localisation and mapping. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 664–672. Springer, Heidelberg (2004)

    Google Scholar 

  11. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)

    Article  MATH  Google Scholar 

  12. Hafner, V.V.: Cognitive maps in rats and robots. Adaptive Behavior 13(2), 87–96 (2005)

    Article  Google Scholar 

  13. Franz, M., Mallot, H.: Biomimetic Robot Navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  14. Gallistel, C.R.: Animal Cognition: The Representation of Space, Time and Number. Annual Review of Psychology 40, 155–189 (1989)

    Article  Google Scholar 

  15. Schmidt, J., Wong, C.K., Yeap, W.K.: A Split & Merge Approach to Metric-Topological Map-Building. In: Int. Conf. on Pattern Recognition (ICPR), Hong Kong, vol. 3, pp. 1069–1072 (2006)

    Google Scholar 

  16. Schmidt, J., Wong, C.K., Yeap, W.K.: Mapping and Localisation with Sparse Range Data. In: Mukhopadhyay, S., Gupta, G.S. (eds.) Proceedings of the Third International Conference on Autonomous Robots and Agents (ICARA), Palmerston North, New Zealand, pp. 497–502 (2006)

    Google Scholar 

  17. Wong, C.K., Schmidt, J., Yeap, W.K.: Using a Mobile Robot for Cognitive Mapping. In: International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India (January 2007), pp. 2243–2248 (2007)

    Google Scholar 

  18. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York, USA (1973)

    MATH  Google Scholar 

  19. Pavlidis, T., Horowitz, S.L.: Segmentation of Plane Curves. IEEE Trans. on Computers C-23, 860–870 (1974)

    Article  MATH  Google Scholar 

  20. Niemann, H.: Pattern Analysis and Understanding, 2nd edn. Springer Series in Information Sciences, vol. 4. Springer, Berlin (1990)

    MATH  Google Scholar 

  21. Triesch, J.: Vision-Based Robotic Gesture Recognition. Shaker Verlag, Aachen (1999)

    Google Scholar 

  22. Triesch, J., von der Malsburg, C.: Democratic Integration: Self-Organized Integration of Adaptive Cues. Neural Computation 13(9), 2049–2074 (2001)

    Article  MATH  Google Scholar 

  23. Denzler, J., Zobel, M., Triesch, J.: Probabilistic Integration of Cues From Multiple Cameras. In: Würtz, R. (ed.) Dynamic Perception, pp. 309–314. Aka, Berlin (2002)

    Google Scholar 

  24. Kähler, O., Denzler, J., Triesch, J.: Hierarchical Sensor Data Fusion by Probabilistic Cue Integration for Robust 3-D Object Tracking. In: IEEE Southwest Symp. on Image Analysis and Interpretation, Nevada, pp. 216–220. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  25. Cheng, K., Spetch, M.L.D.M.K, Bingman, V.P.: Small-scale Spatial Cognition in Pigeons. Behavioural Processes 72, 115–127 (2006)

    Article  Google Scholar 

  26. Cornell, E.H., Heth, C.D.: Memories of travel: Dead reckoning within the cognitive map. In: Allen, G. (ed.) Human spatial memory: Remembering where, pp. 191–215. Lawrence Erlbaum Associates, Mahwah, NJ (2004)

    Google Scholar 

  27. Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bull Rev. 12, 1–23 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephan Winter Matt Duckham Lars Kulik Ben Kuipers

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, J., Wong, C.K., Yeap, W.K. (2007). Spatial Information Extraction for Cognitive Mapping with a Mobile Robot. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds) Spatial Information Theory. COSIT 2007. Lecture Notes in Computer Science, vol 4736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74788-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74788-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74786-4

  • Online ISBN: 978-3-540-74788-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics