Skip to main content

Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter reviews growth and characterization of Czochralski silicon single crystals for semiconductor and solar cell applications. Magnetic-field-applied Czochralski growth systems and unidirectional solidification systems are the focus for large-scale integrated (LSI) circuits and solar applications, for which control of melt flow is a key issue to realize high-quality crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

AC:

alternate current

CCD:

charge-coupled device

CZ:

Czochralski

DC:

direct current

MCZ:

magnetic Czochralski

TMCZ:

transverse magnetic-field-applied Czochralski

ULSI:

ultralarge-scale integrated circuit

VMCZ:

vertical magnetic-field-applied Czochralski

References

  1. M. Itsumi, H. Akiya, T. Ueki: The composition of octahedron structures that act as an origin of defects in thermal SiO_2 on Chochralski silicon, J. Appl. Phys. 78, 5984–5988 (1995)

    Article  ADS  Google Scholar 

  2. K. Koai, A. Seidel, H.-J. Leister, G. Müller, A. Koehler: Modeling of thermal fluid-flow in the liquid encapsulated Czochralski process and comparison with experiments, J. Cryst. Growth 137, 41–47 (1994)

    Article  ADS  Google Scholar 

  3. H.-J. Leister, M. Peric: Numerical-simulation of a 3-D Czochralski flow by a finite volume multi-grid-algorithm, J. Cryst. Growth 123, 567–574 (1992)

    Article  ADS  Google Scholar 

  4. H. Yamagishi, M. Kuramoto, Y. Shiraishi: CZ crystal growth development in super silicon crystal project, Solid State Phenom. 57-8, 37–39 (1997)

    Article  Google Scholar 

  5. Y.C. Won, K. Kakimoto, H. Ozoe: Transient three-dimensional flow characteristics of Si melt in a Czochralski configuration under a cusp-shaped magnetic field, Numer. Heat Transf. A36, 551–561 (1999)

    ADS  Google Scholar 

  6. K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)

    Article  ADS  Google Scholar 

  7. M.G. Williams, J.S. Walker, W.E. Langlois: Melt motion in a Czochralski puller with a weak transverse magnetic-field, J. Cryst. Growth 100, 233–253 (1990)

    Article  ADS  Google Scholar 

  8. A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)

    Article  ADS  Google Scholar 

  9. J.S. Walker, M.G. Williams: Centrifugal pumping during Czochralski silicon growth with a strong transverse magnetic-field, J. Cryst. Growth 137, 32–36 (1994)

    Article  ADS  Google Scholar 

  10. J. Baumgartl, M. Gewald, R. Rupp, J. Stierlen, G. Müller: Studies of buoyancy driven convection in a vertical cylinder with parabolic temperature profile, Proc. 7th Eur. Symp. Mater. Fluid Sci. Microgravity, Oxford (1989) pp. 10–15

    Google Scholar 

  11. L.N. Hjellming, J.S. Walker: Melt motion in a Czochralski crystal puller with an axial magnetic-field-uncertainty in the thermal constants, J. Cryst. Growth 87, 18–32 (1988)

    Article  ADS  Google Scholar 

  12. S. Kobayashi: Numerical-analysis of oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 85, 69–74 (1987)

    Article  ADS  Google Scholar 

  13. M. Akamatsu, K. Kakimoto, H. Ozoe: Effect of crucible rotation on the melt convection and the structure in a Czochralski method, Transp. Phenom. Therm. Sci. Process Eng. 3, 637–642 (1997)

    Google Scholar 

  14. K.-W. Yi, K. Kakimoto, M. Eguchi, M. Watanabe, T. Shyo, T. Hibiya: Spoke patterns on molten silicon in Czochralski system, J. Cryst. Growth 144, 20–28 (1994)

    Article  ADS  Google Scholar 

  15. K. Kakimoto, H. Ozoe: Oxygen distribution at a solid–liquid interface of silicon under transverse magnetic fields, J. Cryst. Growth 212, 429–437 (2000)

    Article  ADS  Google Scholar 

  16. R.A. Brown, T.A. Kinney, P.A. Sackinger, D.E. Bornside: Toward an integrated analysis of Czochralski growth, J. Cryst. Growth 97, 99–115 (1989)

    Article  ADS  Google Scholar 

  17. H. Hirata, N. Inoue: Study of thermal symmetry in Czochralski silicon melt under a vertical magnetic field, Jpn. J. Appl. Phys. 23, L527–L530 (1984)

    Article  ADS  Google Scholar 

  18. H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic-field, J. Cryst. Growth 96, 747–755 (1989)

    Article  ADS  Google Scholar 

  19. H. Hirata, K. Hoshikawa: Homogeneous increase in oxygen concentration in Czochralski silicon-crystals by a cusp magnetic-field, J. Cryst. Growth 98, 777–781 (1989)

    Article  ADS  Google Scholar 

  20. H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic field, J. Cryst. Growth 96, 747–755 (1989)

    Article  ADS  Google Scholar 

  21. K. Hoshi, T. Suzuki, Y. Okubo, N. Isawa: Extended Abstracts, Electrochem. Soc. Spring Meet., Vol. 80-1 (The Electrochem. Soc., Pennington 1980) p. 811

    Google Scholar 

  22. K. Hoshikawa: Czochralski silicon crystal growth in the vertical magnetic field, Jpn. J. Appl. Phys. 21, L545–L547 (1982)

    Article  ADS  Google Scholar 

  23. K. Hoshikawa, H. Kohda, H. Hirata: Homogeneity of vertical magnetic field applied LEC GaAs crystal, Jpn. J. Appl. Phys. 23, L195–L197 (1984)

    Article  Google Scholar 

  24. K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)

    Article  Google Scholar 

  25. K. Kakimoto: Use of an inhomogeneous magnetic fields for silicon crystal growth, Proc. 2nd Workshop High Magn. Fields, ed. by H. Schneider-Muntau (World Scientific, New York 1997) pp. 21–24

    Google Scholar 

  26. K. Kakimoto: Flow instability during crystal growth from the melt, Prog. Cryst. Growth Charact. 30, 191–215 (1995)

    Article  Google Scholar 

  27. K. Kakimoto, Y.W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)

    Article  ADS  Google Scholar 

  28. K. Kakimoto, Y.W. Yi: Use of magnetic fields in crystal growth from semiconductor melts, Physica B 216, 406–408 (1996)

    Article  ADS  Google Scholar 

  29. K.M. Kim, W.E. Langlois: Computer-simulation of boron transport in magnetic Czochralski growth of silicon, J. Electrochem. Soc. 133, 2586–2590 (1986)

    Article  Google Scholar 

  30. A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)

    Article  ADS  Google Scholar 

  31. Z.A. Salnick: Oxygen in Czochralski silicon crystals grown under an axial magnetic field, J. Cryst. Growth 121, 775–780 (1992)

    Article  ADS  Google Scholar 

  32. T. Suzuki, N. Isawa, Y. Okubo, K. Hoshi: Oxygen in Czochralski silicon crystals grown under a transverse magnetic field, Semiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, Y. Takeishi (The Electrochem. Soc., Pennington 1981) pp. 90–94

    Google Scholar 

  33. R.N. Thomas, H.M. Hobgood, P.S. Ravishankar, T.T. Braggins: Oxygen distribution in silicon crystals grown by transverse magnetic fields, Solid State Technol. April, 163–170 (1990)

    Google Scholar 

  34. M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: The baroclinic flow instability in rotating silicon melt, J. Cryst. Growth 128, 288–292 (1993)

    Article  ADS  Google Scholar 

  35. M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Flow mode transition and its effects on crystal-melt interface shape and oxygen distribution for Czochralski-grown Si single crystals, J. Cryst. Growth 151, 285–290 (1995)

    Article  ADS  Google Scholar 

  36. M.J. Wargo, A.F. Witt: Real-time thermal imaging for analysisi and control of crystal-growth by the Czochralski technique, J. Cryst. Growth 116, 213–224 (1955)

    Article  ADS  Google Scholar 

  37. K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)

    Article  ADS  Google Scholar 

  38. Y. Gelfgat, J. Krumins, B.Q. Li: Effects of system parameters on MHD flows in rotating magnetic fields, J. Cryst. Growth 210, 788–796 (2000)

    Article  ADS  Google Scholar 

  39. Y. Gelfgat, E. Jpriede: The influence of combined electromagnetic fields on the heat and mass transfer in a cylindrical vessel with the melt, Magnetohydrodynamics 31, 102–110 (1995)

    Google Scholar 

  40. R.U. Barz, G. Gerbeth, Y. Gelfgat: Numerical simulation of MHD rotator action on hydrodynamics and heat transfer in single crystal growth processes, J. Cryst. Growth 180, 388–400 (1997)

    Article  Google Scholar 

  41. T. Kaiser, K.W. Benz: Taylor vortex instabilities induced by a rotating magnetic field: A numerical approach, Phys. Fluids 10, 1104–1110 (1998)

    Article  ADS  Google Scholar 

  42. F.-U. Brucker, K. Schwerdtfeger: Single-crystal growth with Czochralski method involving rotational electromagnetic stirring of the melt, J. Cryst. Growth 139, 351–356 (1994)

    Article  ADS  Google Scholar 

  43. J. Virbulis, T. Wetzel, A. Muiznieks, B. Hanna, E. Dornberger, E. Tomzig, A. Muhlbauer, W. von Ammon: Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals – Numerical model and qualitative considerations, Proc. 3rd Int. Workshop Model. Cryst. Growth (2000) pp. 31–33

    Google Scholar 

  44. L.J. Liu, T. Kitashima, K. Kakimoto: Three-dimantional calculation of Si-CZ growth, Proc. Int. Symp. Process. Technol. Market Dev. 300 mm Si Mater. (ISPM-300mm Si), Beijing (2003) pp. 2551–2555

    Google Scholar 

  45. O. Grabner, G. Mueller, E. Tomzig, W. von Ammon: Effects of various magnetic field configurations on temperature distributions in Czochralski silicon melts, Microelectron. Eng. 56, 83–88 (2001)

    Article  Google Scholar 

  46. K. Kakimoto, K.-W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)

    Article  ADS  Google Scholar 

  47. A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, L. Gorbunov, A. Pedchenko, J. Virbulis: Numerical 2-D modelling of turbulent melt flow in CZ system with dynamic magnetic fields, J. Cryst. Growth 266, 40–47 (2004)

    Article  ADS  Google Scholar 

  48. H. Ozoe, M. Iwamoto: Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt, J. Cryst. Growth 142, 236–244 (1994)

    Article  ADS  Google Scholar 

  49. P. Sabhapathy, M.E. Salcudean: Numerical study of Czochralski growth of silicon in an axisymmetric magnetic field, J. Cryst. Growth 113, 164–180 (1991)

    Article  ADS  Google Scholar 

  50. K. Kakimoto, H. Watanabe, M. Eguchi, T. Hibiya: Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method, J. Cryst. Growth 88, 365–370 (1988)

    Article  ADS  Google Scholar 

  51. K. Nakamura, S. Maeda, S. Togawa, T. Saisyoji, T. Tomioka: Effect of the shape of crystal-melt interface on point defect reaction in silicon crystals, ECS Proc. 17, 31–33 (2000)

    Google Scholar 

  52. V. Voronkov: The mechanism of swirl defects formation in silicon, J. Cryst. Growth 59, 625–643 (1982)

    Article  ADS  Google Scholar 

  53. W. von Ammon, E. Dornberger, H. Oelkrug, H. Weider: The dependence of bulk defects on the axial temperature gradient od silicon crystals during Czochralski growth, J. Cryst. Growth 151, 273–277 (1995)

    Article  ADS  Google Scholar 

  54. K. Nakamura, T. Saisyoji, J. Tomioka: Grown-in defects in silicon crystals, J. Cryst. Growth 237, 1678–1684 (2002)

    Article  ADS  Google Scholar 

  55. L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)

    Article  ADS  Google Scholar 

  56. D. Franke, T. Rettelbach, C. Habler, W. Koch, A. Muller: Silicon ingot casting: process development by numerical simulations, Sol. Energy Mater. Sol. Cells 72, 83–92 (2002)

    Article  Google Scholar 

  57. M. Ghosh, J. Bahr, A. Muller: Silicon ingot casting: process development by numerical simulations, Proc. 19th Euro. Photovolt. Sol. Energy Conf., Paris (2004) pp. 560–563

    Google Scholar 

  58. D. Vizman, S. Eichler, J. Friedrich, G. Müller: Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs, J. Cryst. Growth 266, 396–403 (2004)

    Article  ADS  Google Scholar 

  59. A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, W. von Ammon: Numerical 3-D modelling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements, J. Cryst. Growth 265, 14–257 (2004)

    Article  ADS  Google Scholar 

  60. L.J. Liu, K. Kakimoto: D global analysis CZ-Si growth in transverse magnetic field with rotating crucible and crystal, Cryst. Res. Technol. 40, 347–351 (2005)

    Article  Google Scholar 

  61. K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)

    Article  Google Scholar 

  62. J.J. Derby, R.A. Brown: Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth, J. Cryst. Growth 75, 227–240 (1986)

    Article  ADS  Google Scholar 

  63. F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters, M.J. Crochet: Global modeling of heat-transfer in crystal growth furnaces, Int. J. Heat Mass Transf. 33, 1849–1871 (1990)

    Article  MATH  Google Scholar 

  64. M. Li, Y. Li, N. Imaishi, T. Tsukada: Global simulation of a silicon Czochralski furnace, J. Cryst. Growth 234, 32–46 (2002)

    Article  ADS  Google Scholar 

  65. V.V. Kalaev, I.Y. Evstratov, N.Y. Makarov: Gas flow effect on global heat transport and melt convection in Czochralski silicon growth, J. Cryst. Growth 249, 87–99 (2003)

    Article  ADS  Google Scholar 

  66. L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field, Int. J. Heat Mass Transf. 48, 4492–4497 (2005)

    Article  MATH  Google Scholar 

  67. L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)

    Article  ADS  Google Scholar 

  68. L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model, Int. J. Heat Mass Transf. 48, 4481–4491 (2005)

    Article  MATH  Google Scholar 

  69. E.W. Weber: Transition-metal profiles in a silicon crystal, Appl. Phys. A30, 1–15 (1983)

    Article  ADS  Google Scholar 

  70. W. Zuhlener, D. Huber: Czochralski crystal growth of silicon. In: Crystal-Growth, Properties and Applications, Vol. 8, ed. by J. Grabmaier (Springer, Berlin, Heidelberg 1988) pp. 1–12

    Google Scholar 

  71. D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, J.J. Geerligs: Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97, 33523–33527 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kakimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Kakimoto, K. (2010). Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_8

Download citation

Publish with us

Policies and ethics