Skip to main content

Liquid-Phase Epitaxy of Advanced Materials

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

The performance of many electronic and optoelectronic devices critically depends on the structural quality and homogeneity of the base material, which is often an epitaxial film grown by either vapor-phase epitaxy (VPE) or liquid-phase epitaxy (LPE).

This chapter presents the state of the art in LPE growth of selected advanced materials:

  1. 1.

    High-temperature superconductors

  2. 2.

    Calcium gallium germanates (langasite-type materials)

  3. 3.

    III–V wide-bandgap nitrides.

It is not the aim, herein, to present LPE growth of more traditional III–V semiconductors (Si, Ge, GaAs, GaP, InP, GaP) and garnets, which have already been described extensively in the literature since about 1960. Instead, some of the most relevant literature references are given in the historical overview, which also provides a very good insight into the potential of LPE growth of newer materials. Despite the fact that LPE growth has gained less attention over the past decades, mainly due to the development of VPE growth techniques, there is a silver lining which clearly indicates that the highest-quality epitaxial films, for most efficient electronic and optoelectronic devices, will ultimately be achieved from liquid-assisted or LPE-grown films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AFM:

atomic force microscopy

ALE:

arbitrary Lagrangian Eulerian

ALE:

atomic layer epitaxy

CGG:

calcium gallium germanate

CVD:

chemical vapor deposition

DVD:

digital versatile disk

ELO:

epitaxial lateral overgrowth

FWHM:

full width at half-maximum

HEMT:

high-electron-mobility transistor

HTSC:

high-temperature superconductor

HVPE:

halide vapor-phase epitaxy

HVPE:

hydride vapor-phase epitaxy

IR:

infrared

LAGB:

low-angle grain boundary

LAO:

LiAlO2

LD:

laser diode

LED:

light-emitting diode

LEEBI:

low-energy electron-beam irradiation

LG:

LiGaO2

LGN:

La3Ga5.5Nb0.5O14

LGO:

LaGaO3

LGS:

La3Ga5SiO14

LGT:

La3Ga5.5Ta0.5O14

LPE:

liquid-phase epitaxy

MBE:

molecular-beam epitaxy

MOCVD:

metalorganic chemical vapor deposition

MOCVD:

molecular chemical vapor deposition

MOVPE:

metalorganic vapor-phase epitaxy

NGO:

NdGaO3

NdBCO:

NdBa2Cu3O7-x

PCF:

primary crystallization field

PCF:

protein crystal growth facility

PVD:

physical vapor deposition

RF:

radiofrequency

SAW:

surface acoustical wave

SIMS:

secondary-ion mass spectrometry

TD:

Tokyo Denpa

TD:

threading dislocation

TSSG:

top-seeded solution growth

UV:

ultraviolet

VPE:

vapor-phase epitaxy

XRD:

x-ray diffraction

YBCO:

YBa2Cu3O7-x

YIG:

yttrium iron garnet

References

  1. H. Nelson: Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes, RCA Review 24, 603 (1963)

    Google Scholar 

  2. L.R. Dawson: High-efficiency graded band-gap Ga1-xAlxAs light-emitting- diodes, J. Appl. Phys. 48, 2485–2492 (1977)

    Article  ADS  Google Scholar 

  3. J.I. Nishizawa, Y. Okuno: Liquid-phase epitaxy of GaP by a temperature difference method under controlled vapor-pressure, IEEE Trans. Electron. Dev. 22, 716–721 (1975)

    Article  Google Scholar 

  4. J. Nishizawa, Y. Okuno, M. Koike, F. Sakurai: Bright pure green emission from N-free GaP LEDs, Jpn. J. Appl. Phys. 19, 377–382 (1980)

    Article  Google Scholar 

  5. M. Konagi, K. Takahashi: Formation of GaAs-(GaAl)As heterojunction transistors by liquid-phase epitaxy, Trans. IEEE J. 94-C, 141 (1974)

    Google Scholar 

  6. E. Bauser, D. Kass, M. Warth, H.P. Strunk: Mater. Res. Soc. Symp. Proc. 54, 267 (1986)

    Article  Google Scholar 

  7. T. Nishinaga, T. Nakano, S. Zhang: Epitaxial lateral overgrowth of GaAs by LPE, Jpn. J. Appl. Phys. 27, L964–L967 (1988)

    Article  ADS  Google Scholar 

  8. Y. Suzuki, T. Nishinaga: Epitaxial lateral overgrowth of Si by LPE with Sn solution and its orientation dependence, Jpn. J. Appl. Phys. 28, 440–445 (1989)

    Article  ADS  Google Scholar 

  9. S. Kinoshita, Y. Suzuki, T. Nishinaga: Epitaxial lateral overgrowth of Si on non-planar substrate, J. Cryst. Growth 115, 561–566 (1991)

    Article  ADS  Google Scholar 

  10. T. Kochiya, Y. Oyama, T. Kimura, K. Suto, J.I. Nishizawa: Dislocation-free large area InP ELO layers by liquid-phase epitaxy, J. Cryst. Growth 281, 263–274 (2005)

    Article  ADS  Google Scholar 

  11. S.H. Shin, G.T. Niizawa, J.G. Pasko, G.L. Bostrup, F.J. Ryan, M. Khoshnevisan, C.I. Westmark, C. Fuller: P-I-N CdTe gamma-ray detectors by liquid phase epitaxy (LPE), Presented at the Nucl. Sci. Symp., Orlando (1984)

    Google Scholar 

  12. G. Bostrup, K.L. Hess, J. Ellsworth, D. Cooper, R. Haines: LPE HgCdTe on sapphire: Status and advancements, J. Electron. Mater. 30, 560–566 (2001)

    Article  ADS  Google Scholar 

  13. R.C. Linares: Epitaxial growth of narrow linewidth yttrium iron garnet films, J. Cryst. Growth 3/4, 443–446 (1968)

    Article  ADS  Google Scholar 

  14. H.J. Levinstein, S. Licht, R.W. Landorf, S. Blank: Growth of high-quality garnet thin films from supercooled melts, Appl. Phys. Lett. 19, 486–488 (1971)

    Article  ADS  Google Scholar 

  15. S.L. Blank: Crystal growth: Magnetic garnets by liquid-phase epitaxy, J. Educ. Modules Mater. Sci. Eng. 2, 357–390 (1980)

    Google Scholar 

  16. M.H. Randles: Crystals for magnetic applications. In: Crystals: Growth, Properties, and Applications, Vol.1, ed. by C.J.M. Rooijmans (Springer, Berlin, Heidelberg 1978) pp.71–96

    Google Scholar 

  17. D. Elwell, H.J. Scheel: Crystal Growth from High-Temperature Solutions (Academic, London 1975)

    Google Scholar 

  18. W. van Erk: The growth kinetics of garnet liquid-phase epitaxy using horizontal dipping, J. Cryst. Growth 43, 446–456 (1978)

    Article  ADS  Google Scholar 

  19. R. Ghez, E.A. Giess: Liquid phase epitaxial-growth kinetics of magnetic garnet films grown by isothermal dipping with axial rotation, Mater. Res. Bull. 8, 31–42 (1973)

    Article  Google Scholar 

  20. W.K. Burton, N. Cabrera, F.C. Frank: The growth of crystals and the equilibrium structure of their surface, Philos. Trans. R. Soc. Lond. Ser. A 243, 299–358 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A.A. Chernov: Crystal growth from the solution and from the melt, Sov. Phys. Usp. 4, 129 (1961)

    Article  Google Scholar 

  22. J.A. Burton, R.C. Prim, W.P. Slichter: The distribution. of solute in crystals grown from the melt, J. Chem. Phys. 21, 1987–1991 (1953)

    Article  ADS  Google Scholar 

  23. G. Winkler: Magnetic Garnets (Vieweg, Braunschweig 1981)

    Google Scholar 

  24. C. Klemenz, I. Utke, H.J. Scheel: Film orientation, growth parameters and growth modes in epitaxy of YBa2Cu3Ox, J. Cryst. Growth 204, 62–68 (1999)

    Article  ADS  Google Scholar 

  25. D.P. Norton: Science and technology of high-temperature superconducting films, Annu. Rev. Mater. Sci. 28, 299–347 (1998)

    Article  ADS  Google Scholar 

  26. H. Hilgenkamp, J. Mannhart: Grain boundaries in high-Tc superconducting films, Rev. Mod. Phys. 74, 485–549 (2002)

    Article  ADS  Google Scholar 

  27. K.H. Wu, S.P. Chen, J.Y. Juang, T.M. Uen, Y.S. Gou: Investigation of the evolution of YBa2Cu3O7d films deposited by scanning pulsed laser deposition on different substrates, Physica C 289, 230–242 (1997)

    Article  ADS  Google Scholar 

  28. C. Klemenz, H.J. Scheel: Flat YBa2Cu3O7δ layers for planar tunnel-device technology, Physica C 265, 126–134 (1996)

    Article  ADS  Google Scholar 

  29. C. Klemenz: Hollow cores and step bunching effects on (001)YBCO surfaces grown by liquid-phase epitaxy, J. Cryst. Growth 187, 221–227 (1998)

    Article  ADS  Google Scholar 

  30. A. Chakraborty, K.C. Kim, F. Wu, J.S. Speck, S.P. DenBaars, U.K. Mishra: Defect reduction in nonpolar a-plane GaN films using in situ SiNx nanomask, Appl. Phys. Lett. 89, 041903 (2006)

    Article  ADS  Google Scholar 

  31. K.A. Dunn, S.E. Babcock, D.S. Stone, R.J. Matyi, L. Zhang, T.F. Kuech: Dislocation arrangement in a thick LEO GaN film on sapphire, MRS Internet J. Nitride Semicond. Res. 5, W2.11 (2000)

    Google Scholar 

  32. B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura: Defect reduction in (11̄00) m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy, Appl. Phys. Lett. 86, L1197–L1199 (2005)

    Article  Google Scholar 

  33. B.A. Haskell, F. Wu, M.D. Craven, S. Matsuda, P.T. Fini, T. Fujii, K. Fujito, S.P. DenBaars, J.S. Speck, S. Nakamura: Defect reduction in (1120) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy, Appl. Phys. Lett. 83, 644–646 (2003)

    Article  ADS  Google Scholar 

  34. C. Klemenz, H.J. Scheel: Solubility of YBa2Cu3O7δ and Nd1+xBa2xCu3O7+δ in the BaO/CuO flux, J. Cryst. Growth 200, 435–440 (1999)

    Article  ADS  Google Scholar 

  35. J.G. Bednorz, K.A. Müller: Possible high-Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189–193 (1986)

    Article  ADS  Google Scholar 

  36. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  ADS  Google Scholar 

  37. M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton: Growth mechanism of sputtered films of YBa2Cu3O7 studied by scanning tunneling microscopy, Science 251, 1587–1589 (1991)

    Article  ADS  Google Scholar 

  38. C. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart, D.G. Schlom: Screw dislocations in high-Tc films, Nature 350, 279–280 (1991)

    Article  ADS  Google Scholar 

  39. R.F. Belt, J. Ings, G. Diercks: Superconductor film growth on LaGaO3 substrates by liquid-phase epitaxy, Appl. Phys. Lett. 56, 1805–1807 (1990)

    Article  ADS  Google Scholar 

  40. G. Balestrino, V. Foglietti, M. Marinelli, E. Milani, A. Paoletti, P. Paroli: Epitaxial films of BSCCO grown from liquid KCl solutions onto several substrates, IEEE Trans. Magn. 27, 1589–1591 (1991)

    Article  ADS  Google Scholar 

  41. G. Balestrino, V. Foglietti, M. Marinelli, E. Milani, A. Paoletti, P. Paroli, G. Luce: Structural and electrical properties of epitaxial films of BSCCO grown from liquid phase epitaxy, Solid State Commun. 76, 503–505 (1990)

    Article  ADS  Google Scholar 

  42. S. Narayanan, K.K. Raina, R.K. Pandey: Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection, J. Mater. Res. 7, 2303–2307 (1992)

    Article  ADS  Google Scholar 

  43. H. Takeya, H. Takei: Preparation of high-Tc Bi-Sr-Ca-Cu-O films on MgO substrates by the liquid phase epitaxial (LPE) method, Jpn. J. Appl. Phys. 28, L229–L232 (1989)

    Article  ADS  Google Scholar 

  44. R.S. Liu, Y.T. Huang, P.T. Wu, J.J. Chu: Epitaxial growth of high-Tc Bi- Ca-Sr-Cu-O superconducting layer by LPE process, Jpn. J. Appl. Phys. 27, L1470–L1472 (1988)

    Article  ADS  Google Scholar 

  45. R.S. Liu, Y.T. Huang, J.M. Liang, P.T. Wu: Epitaxial growth of high-Tc superconducting Tl-Ca-Ba-Cu-O films by liquid phase epataxial process, Physica C 156, 785–787 (1988)

    Article  ADS  Google Scholar 

  46. A.S. Yue, W.S. Liao, H.J. Choi: LPE growth of high-Tc Bi2Sr2Ca1Cu2Ox films, Cryogenics 32, 596–599 (1992)

    Article  ADS  Google Scholar 

  47. J.S. Shin, H. Ozaki: Superconducting Bi-Sr-Ca-Cu-O films prepared by the liquid phase epitaxial method, Physica C 173, 93–98 (1991)

    Article  ADS  Google Scholar 

  48. L.H. Perng, T.S. Chin, K.C. Chen, C.H. Lin: Y-Ba-Cu-O superconducting films grown on (100) magnesia and sapphire substrates by a melt growth method without crucible, Supercond. Sci. Technol. 3, 233–237 (1990)

    Article  ADS  Google Scholar 

  49. C. Klemenz, H.J. Scheel: Liquid-phase epitaxy of high-Tc superconductors, J. Cryst. Growth 129, 421–428 (1993)

    Article  ADS  Google Scholar 

  50. C. Dubs, K. Fischer, P. Görnert: Liquid phase epitaxy of YBa2Cu3O7x on NdGaO3 and LaGaO3 substrates, J. Cryst. Growth 123, 611–614 (1992)

    Article  ADS  Google Scholar 

  51. H.J. Scheel, C. Klemenz, F.-K. Reinhart, H.P. Lang, H.-J. Güntherodt: Monosteps on extremely flat YBa2Cu3O7δ surfaces grown by liquid-phase epitaxy, Appl. Phys. Lett. 65, 901–903 (1994)

    Article  ADS  Google Scholar 

  52. T. Kitamura, M. Yoshida, Y. Yamada, Y. Shiohara, I. Hirabayashi, S. Tanaka: Crystalline orientation of YBa2Cu3Ox film prepared by liquid-phase epitaxial growth on NdGaO3 substrate, Appl. Phys. Lett. 66, 1421–1423 (1995)

    Article  ADS  Google Scholar 

  53. H.J. Scheel, F. Licci: Phase diagrams and crystal growth of oxide superconductors, Thermochim. Acta 174, 115–130 (1991)

    Article  Google Scholar 

  54. F. Licci, H.J. Scheel, P. Tissot: Determination of the eutectic composition by crystal growth and flux separation: example BaCuO2-CuOx, J. Cryst. Growth 112, 600–605 (1991)

    Article  ADS  Google Scholar 

  55. H.J. Scheel, F. Licci: Crystal growth of YBa2Cu3O7x, J. Cryst. Growth 85, 607–614 (1987)

    Article  ADS  Google Scholar 

  56. T. Aichele, S. Bornmann, C. Dubs, P. Görnert: Liquid-phase epitaxy (LPE) of YBa2Cu3O7x high Tc superconductors, Cryst. Res. Technol. 32, 1145–1154 (1997)

    Article  Google Scholar 

  57. C. Krauns, M. Sumida, M. Tagami, Y. Yamada, Y. Shiohara: Solubility of RE elements into Ba-Cu-O melts and the enthalpy of dissolution, Z. Phys. B 96, 207–212 (1994)

    Article  ADS  Google Scholar 

  58. P. Bennema, J.P. van der Eerden: Crystal graphs, connected nets, roughening transition and the morphology of crystals. In: Morphology of Crystals, ed. by I. Sunagawa (Terra Scientific, Tokyo 1987), Chap. 1

    Google Scholar 

  59. G.H. Gilmer, K.A. Jackson: Computer simulation of crystal growth. In: Crystal Growth and Materials, ed. by E. Kaldis, H.J. Scheel (North Holland, Amsterdam 1977) pp.80–114

    Google Scholar 

  60. D.S. Tsagareishvili, G.G. Gvelesiani, I.B. Baratashvili, G.K. Moiseev, N.A. Vatolin: Thermodynamic functions of YBa2Cu3O7, YBa2Cu3O6, Y2BaCuO5 and BaCuO2, Russ. J. Phys. Chem. 64, 1404–1406 (1990)

    Google Scholar 

  61. G.K. Moiseev, N.A. Vatolin, S.I. Zaizeva, N.I. Ilyinych, D.S. Tsagareishvili, G.G. Gvelesiani, I.B. Baratashvili, J. Sestàk: Calculation of thermodynamic properties of the phases in the Y-Ba-Cu-O system, Thermochim. Acta 198, 267–278 (1992)

    Article  Google Scholar 

  62. W. van Erk: The growth kinetics of garnet liquid-phase epitaxy using horizontal dipping, J. Cryst. Growth 43, 446–456 (1979)

    Article  Google Scholar 

  63. W. van Erk: A solubility model for rare-earth iron garnets in a PbO/B2O3 solution, J. Cryst. Growth 46, 539–550 (1979)

    Article  ADS  Google Scholar 

  64. W. van Erk: Growth of a mixed crystal from an ideal dilute solution, J. Cryst. Growth 57, 71–83 (1982)

    Article  ADS  Google Scholar 

  65. I. Utke, C. Klemenz, H.J. Scheel, M. Sasaura, S. Myazawa: Misfit problems in epitaxy of high-Tc superconductors, J. Cryst. Growth 174, 806–812 (1997)

    Article  ADS  Google Scholar 

  66. I. Utke, C. Klemenz, H.J. Scheel, P. Nüesch: High-temperature x-ray measurements of gallates and cuprates, J. Cryst. Growth 174, 813–820 (1997)

    Article  ADS  Google Scholar 

  67. N. Cabrera, M.M. Levine: On the dislocation theory of evaporation of crystals, Philos. Mag. 1, 450–458 (1956)

    Article  ADS  MATH  Google Scholar 

  68. H.P. Lang, H. Haefke, G. Leemann, H.J. Güntherodt: Scanning tunneling microscopy study of different growth stages of YBa2Cu3O7d thin films, Physica C 194, 81–91 (1992)

    Article  ADS  Google Scholar 

  69. M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton: Growth mechanism of sputtered films of YBa2Cu3O7 studied by scanning tunelling microscopy, Science 251, 1587–1589 (1991)

    Article  ADS  Google Scholar 

  70. C. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart, D.G. Schlom: Screw dislocations in high-Tc films, Nature 350, 279–280 (1991)

    Article  ADS  Google Scholar 

  71. T. Nishinaga, H.J. Scheel: Crystal growth aspect of high-Tc superconductors. In: Advances in Superconductivity VIII, ed. by H. Hyakawa, Y. Enomoto (Springer, Tokyo 1996) pp.33–38

    Chapter  Google Scholar 

  72. A.A. Kaminskii, B.V. Mill, G.G. Khodzhabagyan, A.F. Konstantinova, A.I. Okorochkov, I.M. Silvestrova: Investigation of trigonal (La1-xNdx)3Ga5SiO14 crystals: I. Growth and optical properties, Phys. Status Solidi (a) 80, 387–398 (1983)

    Article  ADS  Google Scholar 

  73. Y.V. Pisarevski, P.A. Senushencov, P.A. Popov, B.V. Mill: New strong piezoelectric La3Ga5.5Nb0.5O14 with temperature compensation cuts, Proc. IEEE Int. Freq. Control Symp. (1995) pp.653–656

    Google Scholar 

  74. S. Kück: Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers, Appl. Phys. B 72, 515–562 (2001)

    Article  ADS  Google Scholar 

  75. Y. Kim, A. Ballato: Force-frequency effects of Y-cut langanite and Y-cut langatate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1678–1682 (2003)

    Article  Google Scholar 

  76. J.A. Kosinski, R.A. Pastore Jr., X. Yang, J. Yang, J.A. Turner: Stress-induced frequency shifts in langasite thickness-mode resonators, Proc. IEEE Int. Freq. Control Symp. (2003) pp.716–722

    Google Scholar 

  77. C. Klemenz, M. Berkowski, B. Deveaud-Pledran, D.C. Malocha: Defect structure of langasite-type crystals: a challenge for applications, Proc. IEEE Int. Freq. Control Symp. (2002) pp.301–306

    Google Scholar 

  78. R. Fachberger, T. Holzheu, E. Riha, E. Born, P. Pongratz, H. Cerva: Langasite and langatate nonuniform material properties correlated to the performance of SAW-devices, Proc. IEEE Int. Freq. Control Symp. (2001) pp.235–239

    Google Scholar 

  79. C.F. Klemenz, J. Luo, D. Shah: High-quality 2 inch La3Ga5.5Ta0.5O14 and Ca3TaGa3Si2O14 crystals for oscillators and resonators, Adv. Electron. Ceram. Mater. Ceram. Eng. Sci. Proc. 26, 169–176 (2005)

    Article  Google Scholar 

  80. B.V. Mill, Y.V. Pisarevshy, E.L. Belokoneva: Synthesis, growth, and some properties of single crystals with the Ca3Ga2Ge4O14 structure, Proc. Jt. Meet. Eur. Freq. Time Forum IEEE Int. Freq. Control Symp. (1999) pp.829–834

    Google Scholar 

  81. B.V. Mill, M.V. Lomonosov: Two new lines of langasite family compositions, Proc. IEEE Int. Freq. Control Symp. (2001) pp.255–262

    Google Scholar 

  82. V.I. Chani, K. Shimamura, Y.M. Yu, T. Fukuda: Design of new oxide crystals with improved structural stability, Mater. Sci. Eng. R 20, 281–338 (1997)

    Article  Google Scholar 

  83. C. Klemenz: Liquid-phase epitaxy of La3Ga5SiO14, Proc. Eur. Freq. Time Forum (2001) pp.42–45

    Google Scholar 

  84. C. Klemenz: High-quality langasite films grown by liquid-phase epitaxy, J. Cryst. Growth 237, 714–719 (2002)

    Article  ADS  Google Scholar 

  85. C. Klemenz: High-quality La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 LPE films for oscillators and resonators, J. Cryst. Growth 250, 34–40 (2003)

    Article  ADS  Google Scholar 

  86. C.F. Klemenz, A. Sayir: In-situ Al:Ti-co-doped La3Ga5.5Ta0.5O14 films for high-Q resonators, Proc. IEEE Int. Freq. Contol Symp. (2006) pp.676–680

    Google Scholar 

  87. H. Amano, M. Kito, K. Hiramatsu, I. Akasaki: P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys. 28, L2112–L2114 (1989)

    Article  ADS  Google Scholar 

  88. F.A. Ponce: Defects and interfaces in GaN epitaxy, MRS Bull. 22, 51–57 (1997)

    Article  Google Scholar 

  89. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku: Subband emissions of InGaN multi-quantum-well laser diodes under room-temperature continuous wave operation, Appl. Phys. Lett. 70, 2753–2755 (1997)

    Article  ADS  Google Scholar 

  90. T. Detchprohm, T. Kuroda, K. Hiramatsu, N. Sawaki, H. Goto: The selective growth in hydride vapor phase epitaxy of GaN, Inst. Phys. Conf. Ser. 142, 859–862 (1996)

    Google Scholar 

  91. T.S. Zheleva, O. Nam, M.D. Bremser, R.F. Davis: Dislocation density reduction via lateral epitaxy in selectively grown GaN structures, Appl. Phys. Lett. 71, 2472–2474 (1997)

    Article  ADS  Google Scholar 

  92. V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, V. Mudryi, J. Aderhold, O. Semchinova, J. Graul: Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap, Phys. Status Solidi (b) 229, R1–R3 (2002)

    Article  ADS  Google Scholar 

  93. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi: Unusual properties of the fundamental bandgap of InN, Appl. Phys. Lett. 80, 3967 (2002)

    Article  ADS  Google Scholar 

  94. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff: Effects of the narrow band gap on the properties of InN, Phys. Rev. B 66, 201403 (2002)

    Article  ADS  Google Scholar 

  95. T.L. Tansley, C.P. Foley: Optical bandgap of indium nitride, J. Appl. Phys. 59, 3241–3244 (1986)

    Article  ADS  Google Scholar 

  96. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff: Small band gap bowing in In1-xGaxN alloys, Appl. Phys. Lett. 80, 4741–4743 (2002)

    Article  ADS  Google Scholar 

  97. J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, S. Kurtz: Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system, J. Appl. Phys. 94, 6477–6482 (2003)

    Article  ADS  Google Scholar 

  98. R.A. Logan, C.D. Thurmond: Heteroepitaxial thermal gradient solution growth of GaN, J. Electrochem. Soc. 119, 1727–1734 (1972)

    Article  Google Scholar 

  99. C. Klemenz, H.J. Scheel: Crystal growth and liquid-phase epitaxy of GaN, J. Cryst. Growth 211, 62–67 (2000)

    Article  ADS  Google Scholar 

  100. G. Sun, E. Meissner, P. Berwian, G. Müller, J. Friedrich: Study on the kinetics of the formation reaction of GaN from Ga-solutions under ammonia atmosphere, J. Cryst. Growth 305, 326–334 (2007)

    Article  ADS  Google Scholar 

  101. O. Glemser, M. Field, K. Kleine-Weischeide: Z. Anorg. Chem. 332, 257–259 (1964)

    Article  Google Scholar 

  102. R.M. Yonco, E. Veleckis, V.A. Maroni: Solubility of nitrogen in liquid lithium and thermal decomposition of solid Li3N, J. Nucl. Mater. 57, 317–324 (1975)

    Article  ADS  Google Scholar 

  103. W.J. Wang, X.L. Chen, Y.T. Song, W.X. Yuan, Y.G. Cao, X. Wu: Assessment of Li-Ga-N ternary system and GaN single crystal growth, J. Cryst. Growth 264, 13–16 (2004)

    Article  ADS  Google Scholar 

  104. M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki: Growth of nitride crystals, BN, AlN and GaN by using a Na flux, Diam. Relat. Mater. 9, 512–515 (2000)

    Article  ADS  Google Scholar 

  105. H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo: Preparation of GaN single crystals using a Na flux, Chem. Mater. 9, 413–416 (1997)

    Article  Google Scholar 

  106. F. Kawamura, T. Iwahashi, M. Morishita, K. Omae, M. Yoshimura, Y. Mori, T. Sasaki: Growth of transparent: Large size GaN single crystal with low dislocations using Ca-Na flux system, Jpn. J. Appl. Phys. 42, L729–L731 (2003)

    Article  ADS  Google Scholar 

  107. F. Kawamura, H. Umeda, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, H. Okado, K. Arakawa, H. Mori: Drastic decrease in dislocations during liquid-phase epitaxy growth of GaN single crystals using Na flux method without any artificial processes, Jpn. J. Appl. Phys. 45, 2528–2530 (2006)

    Article  ADS  Google Scholar 

  108. C.O. Dugger: The synthesis of aluminum nitride single crystals, Mater. Res. Bull. 9, 331–336 (1974)

    Article  Google Scholar 

  109. T. Fukuda, D. Ehrentraut: Prospects for the ammonothermal growth of large GaN crystal, J. Cryst. Growth 305, 304–310 (2007)

    Article  ADS  Google Scholar 

  110. R. Dwiliñski, R. Doradziñski, J. Garczyñski, L. Sierzputowski, J.M. Baranowski, M. Kamiñska: AMMONO method of GaN and AlN production, Diam. Relat. Mater. 7, 1348–1350 (1998)

    Article  ADS  Google Scholar 

  111. T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura: Ammonothermal growth of GaN on an over-1-inch seed crystal, Jpn. J. Appl. Phys. 44, L1570–L1572 (2005)

    Article  ADS  Google Scholar 

  112. B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis: Ammonothermal growth of GaN crystals in alkaline solutions, J. Cryst. Growth 287, 376–379 (2006)

    Article  ADS  Google Scholar 

  113. D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata: Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions, J. Mater. Chem. 17, 886–893 (2007)

    Article  Google Scholar 

  114. C. Klemenz: unpublished

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine F. Klemenz Rivenbark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Klemenz Rivenbark, C.F. (2010). Liquid-Phase Epitaxy of Advanced Materials. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_31

Download citation

Publish with us

Policies and ethics