Skip to main content

Liquid-Phase Electroepitaxy of Semiconductors

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

  • 17k Accesses

Abstract

The chapter presents a review of the growth of single-crystal bulk semiconductors by liquid-phase electroepitaxy (LPEE). Following a short introduction, early modeling and theoretical studies on LPEE are briefly introduced. Recent experimental results on LPEE growth of GaAs/GaInAs single crystals under a static applied magnetic field are discussed in detail. The results of three-dimensional numerical simulations carried out for LPEE growth of GaAs under various electric and magnetic field levels are presented. The effect of magnetic field nonuniformities is numerically examined. Crystal growth experiments show that the application of a static magnetic field in LPEE growth of GaAs increases the growth rate very significantly. A continuum model to predict such high growth rates is also presented. The introduction of a new electric mobility in the model, i.e., the electromagnetic mobility, allows accurate predictions of both the growth rate and the growth interface shape. Space limitation required the citation of a limited number of references related to LPEEĀ [29.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]. For details of many aspects of the LPEE growth process and its historical developments, the reader is referred to these references and also others cited therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

HEMT:

high-electron-mobility transistor

LPD:

liquid-phase diffusion

LPE:

liquid-phase epitaxy

LPEE:

liquid-phase electroepitaxy

OEIC:

optoelectronic integrated circuit

SCC:

source-current-controlled

References

  1. M.Ā Kumagawa, A.F.Ā Witt, M.Ā Lichtensteiger, H.C.Ā Gatos: Current-controlled growth and dopant modulation in liquid-phase epitaxy, J.Ā Electrochem. Soc. 120, 583/584 (1973)

    ArticleĀ  Google ScholarĀ 

  2. J.J.Ā Daniele: Peltier-induced LPE and composition stabilization of GaAlAs, Appl. Phys. Lett. 27, 373 (1975)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. J.J.Ā Daniele: Experiments showing absence of electromigration of As and Al in Peltier LPE of GaAs and Ga1-xAlxAs, J.Ā Electrochem. Soc. 124, 1143 (1977)

    ArticleĀ  Google ScholarĀ 

  4. V.A.Ā Gevorkyan, L.V.Ā Golubev, S.G.Ā Petrosyan, Y.A.Ā Shik, Y.V.Ā Shmatsev: Sov. Phys. Tech. Phys. 22, 750ā€“755 (1977)

    Google ScholarĀ 

  5. L.Ā Jastrzebski, H.C.Ā Gatos, A.F.Ā Witt: Electromigration in current-controlled LPE, J.Ā Electrochem. Soc. 123, 1121 (1976)

    ArticleĀ  Google ScholarĀ 

  6. L.Ā Jastrzebski, H.C.Ā Gatos: Current-controlled growth, segregation and amphoteric behavior of Si in GaAs from Si-doped solutions, J.Ā Cryst. Growth 42, 309ā€“314 (1977)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. L.Ā Jastrzebski, H.C.Ā Gatos, A.F.Ā Witt: Current-induced solution growth of garnet layers, J.Ā Electrochem. Soc. 124, 633 (1977)

    ArticleĀ  Google ScholarĀ 

  8. L.Ā Jastrzebski, Y.Ā Imamura, H.C.Ā Gatos: Thickness uniformity of GaAs layers grown by electroepitaxy, J.Ā Electrochem. Soc. 125, 1140 (1978)

    ArticleĀ  Google ScholarĀ 

  9. L.Ā Jastrzebski, J.Ā Lagowski, H.C.Ā Gatos, A.F.Ā Witt: Determination of carrier concentration distribution in semiconductors by IR absorption ā€“ Si, J.Ā Appl. Phys. 49, 5909 (1978)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. T.Ā Bryskiewicz: Peltier-induced growth kinetics of liquid-phase epitaxial GaAs, J.Ā Cryst. Growth 43, 567ā€“571 (1978)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. A.F.Ā Witt, H.C.Ā Gatos, M.Ā Lichtensteiger, C.J.Ā Herman: Crystal-growth and segregation under zero gravity ā€“ Ge, J.Ā Eletrochem. Soc. 125, 1832 (1978)

    ArticleĀ  Google ScholarĀ 

  12. T.Ā Bryskiewicz, A.Ā Laferriere: Growth of alloy substrates by liquid-phase electroepitaxy - theoretical considerations, J.Ā Cryst. Growth 129, 429ā€“442 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. Y.H.Ā Lo, R.Ā Bhat, P.S.D.Ā Lin, T.P.Ā Lee: Long-wavelength optoelectronic integrated circuit transmitter, Proc. SPIE 1582, 60ā€“70 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. W.P.Ā Hong, G.K.Ā Chang, R.Ā Bhat, C.Ā Nguyen, H.P.Ā Lee, L.Ā Wong, K.R.Ā Runge: InP-based MSM-HEMT receiver OEICs for long-wavelength light wave systems, Proc. SPIE 1582, 134ā€“144 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. W.J.Ā Schaff, P.J.Ā Tasker, M.C.Ā Foisy, L.F.Ā Eastman: Device applications of stained layer epitaxy. In: Semiconductors and Semimetals, Vol.33, ed. by T.P.Ā Pearsall (Academic, New York 1991) pp.73ā€“133

    Google ScholarĀ 

  16. L.F.Ā Eastman: In: Optoelectronic Materials and Devices Concepts, ed. by M.Ā Razeghi (SPIE Optical Engineering Press, Bellingham 1991) p.41

    Google ScholarĀ 

  17. A.Ā Andaspaeva, A.N.Ā Baranov, A.Ā Guseinov, A.N.Ā Imenkov, L.M.Ā Litvak: Sov. Tech. Phys. Lett. 14, 377 (1988)

    Google ScholarĀ 

  18. H.K.Ā Choi, S.J.Ā Eglash: High-efficiency high-power GaInAsSb-AlGaAsSb double-heterostructure lasers emitting at 2.3 Ī¼ m, IEEE J.Ā Quantum Electron. 27, 1555 (1991)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. S.J.Ā Eglash, H.K.Ā Choi: MBE growth, material properties, and performance of GaSb-based 2.2 Ī¼ m diode-lasers, Inst. Phys. Conf. Ser. 120(10), 487 (1992)

    Google ScholarĀ 

  20. T.Ā Bryskiewicz, C.F.Ā Boucher Jr., J.Ā Lagowski, H.C.Ā Gatos: Bulk GaAs crystal-growth by liquid-phase electroepitaxy, J.Ā Cryst. Growth 82, 279ā€“288 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. S.Ā Dannefear, P.Ā Mascher, D.Ā Kerr: Annealing of grown-in defects in GaAs, Proc. MRS 104, 471 (1978)

    ArticleĀ  Google ScholarĀ 

  22. C.F.Ā Boucher Jr., O.Ā Ueda, T.Ā Bryskiewicz, J.Ā Lagowski, H.C.Ā Gatos: Elimination of dislocations in bulk GaAs crystals grown by liquid-phase electroepitaxy, J.Ā Appl. Phys. 61, 359ā€“364 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. T.Ā Bryskiewicz, M.Ā Bugajski, J.Ā Lagowski, H.C.Ā Gatos: Growth and characterization of high quality LPEE GaAs bulk crystals, J.Ā Cryst. Growth 85, 136ā€“141 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. T.Ā Bryskiewicz, M.Ā Bugajski, B.Ā Bryskiewicz, J.Ā Lagowski, H.C.Ā Gatos: LPEE growth an characterization of In(V)Ga/As(V) crystal, Proc. Inst. Phys. Ser. 91(3), 259 (1988)

    Google ScholarĀ 

  25. B.Ā Bryskiewicz, T.Ā Bryskiewicz, E.Ā Jiran: Internal strain and dislocations in InxGa1-xAs crystals grown by liquid phase electroepitaxy, J.Ā Electron. Mater. 24, 203 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  26. H.Ā Sheibani, S.Ā Dost, S.Ā Sakai, B.Ā Lent: Growth of bulk single crystals under applied magnetic field by liquid phase electroepitaxy, J.Ā Cryst. Growth, 258(3-4), 283ā€“295 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. H.Ā Sheibani, Y.C.Ā Liu, S.Ā Sakai, B.Ā Lent, S.Ā Dost: The effect of applied magnetic field on the growth mechanisms of liquid phase electroepitaxy, Int. J.Ā Eng. Sci. 41, 401ā€“415 (2003)

    ArticleĀ  Google ScholarĀ 

  28. G.Ā Bischopink, K.W.Ā Benz: THM growth of AlxGa1-xSb bulk crystals, J.Ā Cryst. Growth 128, 466ā€“470 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. J.J.Ā Daniele, A.J.Ā Hebling: Peltier-induced liquid-phase epitaxy and compositional control of mm-thick layers of (Al,Ga)As, J.Ā Appl. Phys. 52, 4325ā€“4327 (1981)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. Z.R.Ā Zytkiewicz: Influence of convection on the composition profiles of thick GaAlAs layers grown by liquid phase electroepitaxy, J.Ā Cryst. Growth 131, 426ā€“430 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  31. Z.R.Ā Zytkiewicz: Liquid phase electroepitaxial growth of thick and compositionally uniform AlGaAs layers on GaAs substrates, J.Ā Cryst. Growth 146, 283ā€“286 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  32. Z.R.Ā Zytkiewicz: Joule effect as a barrier for unrestricted growth of bulk crystals by liquid phase electroepitaxy, J.Ā Cryst. Growth 172, 259ā€“268 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. C.Ā Takenaka, K.Ā Nakajima: Effect of electric-current on the LPE growth of InP, J.Ā Cryst. Growth 108, 519 (1991)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. N.Ā Djilali, Z.Ā Qin, S.Ā Dost: Role of thermosolutal convection in liquid phase electroepitaxial growth of gallium arsenide, J.Ā Cryst. Growth 149, 153ā€“166 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Y.C.Ā Liu, Y.Ā Okano, S.Ā Dost: The effect of applied magnetic field on flow structures in liquid phase electroepitaxy ā€“ A three-dimensional simulation model, J.Ā Cryst. Growth 244, 12ā€“26 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. Y.C.Ā Liu, S.Ā Dost, H.Ā Sheibani: A three dimensional numerical simulation for the transport structures in liquid phase electroepitaxy under applied magnetic field, Int. J.Ā Trans. Phenom. 6, 51ā€“62 (2004)

    Google ScholarĀ 

  37. R.W.Ā Wilcox: Influence of convection on the growth of crystals from solution, J.Ā Cryst. Growth 65, 133 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. S.Ā Ostrach: Fluid mechanics in crystal growth ā€“ The 1982 Freeman scholar lecture, J.Ā Fluids Eng. 105, 5ā€“20 (1983)

    ArticleĀ  Google ScholarĀ 

  39. S.Ā Dost, Y.C.Ā Liu, B.Ā Lent: A numerical simulation study for the effect of applied magnetic field in liquid phase electroepitaxy, J.Ā Cryst. Growth 240, 39ā€“51 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. S.Ā Dost, B.Ā Lent, H.Ā Sheibani, Y.C.Ā Liu: Recent developments in liquid phase electroepitaxial growth of bulk crystals under magnetic field, C. r. Mec. 332(5/6), 413ā€“428 (2004)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  41. S.Ā Dost, B.Ā Lent: Single Crystal Growth of Semiconductors from Metallic Solutions (Elsevier, Amsterdam 2007)

    Google ScholarĀ 

  42. M.Ā Yildiz, S.Ā Dost, B.Ā Lent: Growth of bulk SiGe single crystals by liquid phase diffusion, J. Cryst. Growth 280(1-2), 151ā€“160 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. M.Ā Yildiz, S.Ā Dost: A continuum model for the liquid phase diffusion growth of bulk SiGe single crystals, Int. J.Ā Eng. Sci. 43, 1059ā€“1080 (2005)

    ArticleĀ  Google ScholarĀ 

  44. E.Ā Yildiz, S.Ā Dost, M.Ā Yildiz: A numerical simulation study for the effect of magnetic fields in liquid phase diffusion growth of SiGe single crystals, J.Ā Cryst. Growth 291, 497ā€“511 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  45. M.Ā Yildiz, S.Ā Dost, B.Ā Lent: Evolution of the growth interface in liquid phase diffusion growth of bulk SiGe single crystals, Cryst. Res. Technol. 41(3), 211ā€“216 (2006)

    ArticleĀ  Google ScholarĀ 

  46. S.Ā Dost, Z.Ā Qin: A model for liquid phase electroepitaxial growth of ternary alloy semiconductors ā€“ 1. Theory, Int. J.Ā Electromagn. Mech. 7(2), 109ā€“128 (1996)

    Google ScholarĀ 

  47. Y.Ā Imamura, L.Ā Jastrzebski, H.C.Ā Gatos: Defect structure and electronic charateristics of GaAs layers grow by electroepitaxy and thermal LPE, J.Ā Electrochem. 126(8), 1381ā€“1385 (1979)

    ArticleĀ  Google ScholarĀ 

  48. Z.Ā Qin, S.Ā Dost, N.Ā Djilali, B.Ā Tabarrok: A finite element model for liquid phase electroepitaxy, Int. J.Ā Numer. Methods Eng. 38(23), 3949ā€“3968 (1995)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  49. Z.Ā Qin, S.Ā Dost, N.Ā Djilali, B.Ā Tabarrok: A model for liquid phase electroepitaxy under an external magnetic field ā€“ 2. Application, J.Ā Cryst. Growth 153, 131ā€“139 (1995)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  50. Z.Ā Qin, S.Ā Dost: A model for liquid phase electroepitaxial growth of ternary alloy semiconductors ā€“ 2. Application, Int. J.Ā Appl. Electromagn. Mech. 7(2), 129ā€“142 (1996)

    Google ScholarĀ 

  51. H.Ā Ben Hadid, D.Ā Henry: Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field. PartĀ 1.Ā Two-dimensional flow, J.Ā Fluid Mech. 333, 23ā€“56 (1996)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  52. H.Ā Ben Hadid, D.Ā Henry: Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field. Part 2.Ā Three-dimensional flow, J.Ā Fluid Mech. 333, 57ā€“83 (1996)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  53. H.Ā Ben Hadid, S.Ā Vaux, S.Ā Kaddeche: Three-dimensional flow transitions under a rotating magnetic field, J.Ā Cryst. Growth 230, 57ā€“62 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  54. D.H.Ā Kim, P.M.Ā Adornato, R.A.Ā Brown: Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth, J.Ā Cryst. Growth 89, 339 (1988)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  55. L.Ā Davoust, M.D.Ā Cowley, R.Ā Moreau, R.Ā Bolcato: Buoyancy-driven convection with a uniform magnetic field ā€“ Part 2. Experimental investigation, J.Ā Fluid Mech. 400, 59 (1999)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  56. V.Ā Kumar, S.Ā Dost, F.Ā Durst: Numerical modeling of crystal growth under strong magnetic fields: An application to the travelling heater method, Appl. Math. Modell. 31(3), 589ā€“605 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  57. T.Ā Tagawa, H.Ā Ozoe: Enhancement of heat transfer rate by application of a static magnetic field during natural convection of liquid metal in a cube, J.Ā Heat Transf. 119, 265 (1997)

    ArticleĀ  Google ScholarĀ 

  58. T.Ā Tagawa, H.Ā Ozoe: Enhanced heat transfer rate measured for natural convection in liquid gallium in a cubical enclosure under a static magnetic field, J.Ā Heat Transf. 120, 1027 (1998)

    ArticleĀ  Google ScholarĀ 

  59. K.Ā Terashima, J.Ā Nishio, S.Ā Washizuka, M.Ā Watanabe: Magnetic field effect on residual impurity concentrations for LEC GaAs crystal growth, J.Ā Cryst. Growth 84, 247 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  60. A.Y.Ā Gelfgat, P.Z.Ā Bar-Yoseph, A.Ā Solan: Axisymmetry breaking instabilities of natural convection in a vertical Bridgman growth configuration, J.Ā Cryst. Growth 220, 316 (2000)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  61. S.Ā Dost, H.Ā Sheibani, Y.C.Ā Liu, B.Ā Lent: Recent developments in modelling of liquid phase electroepitaxy under applied magnetic field, Cryst. Res. Technol. 40(4/5), 313 (2005)

    ArticleĀ  Google ScholarĀ 

  62. S.Ā Dost, H.Ā Sheibani, Y.C.Ā Liu, B.Ā Lent: On the high growth rates in electroepitaxial growth of bulk semiconductor crystals in magnetic field, J.Ā Cryst. Growth 275(1-2), e1ā€“e6 (2005)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  63. S.Ā Dost, H.Ā Sheibani: A mathematical model for solution growth of bulk crystals under magnetic field, Philos. Mag. 85(33-35), 4331ā€“4351 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  64. K.Ā Nakajima: Liquid phase epitaxial growth of very thick In1-xGaxAs layers with uniform composition by source-current-controlled method, J.Ā Appl. Phys. 61(9), 4626 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  65. K.Ā Nakajima, S.Ā Yamazaki, I.Ā Umebu: A new growth method using source current control to supply solute elements-demonstration of In1-xGaxAs case, Jpn. J.Ā Appl. Phys. 23(1), L26ā€“L28 (1984)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  66. K.Ā Nakajima, S.Ā Yamazaki: A new method to supply solute elements into growth solutions ā€“ Demonstration by liquid phase epitaxial growth of In1-xGaxAs, J.Ā Electrochem. Soc. 132, 904 (1985)

    ArticleĀ  Google ScholarĀ 

  67. K.Ā Nakajima, S.Ā Yamazaki: Growth of very thick In1-xGaxAs layers by source-current-controlled method, J.Ā Cryst. Growth 74, 39ā€“47 (1986)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  68. K.Ā Nakajima: Calculation of composition variation of In1-xGaxAs ternary crystals for diffusion and electromigration limited growth from a temperature graded solution with source material, J.Ā Cryst. Growth. 110, 781ā€“794 (1991)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  69. K.Ā Nakajima: Calculation of stresses in In0.12Ga0.88As ternary bulk crystals with compositionally graded In1-xGaxAs layers on GaAs seeds, J.Ā Cryst. Growth 113, 477ā€“484 (1991)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  70. S.Ā Dost, N.Ā Djilali, Z.Ā Qin: A two-dimensional diffusion model for liquid-phase electroepitaxial growth of GaAs, J.Ā Cryst. Growth 143(3/4), 141ā€“154 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  71. S.Ā Dost, H.A.Ā Erbay: A continuum model for liquid phase electroepitaxy, Int. J.Ā Eng. Sci. 33(10), 1385ā€“1402 (1995)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  72. S.Ā Dost, Z.Ā Qin: A model for liquid-phase electroepitaxy under an external magnetic field. PartĀ 1.Ā Theory, J.Ā Cryst. Growth 153, 123ā€“130 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  73. S.Ā Dost, Z.Ā Qin: A numerical simulation model for liquid phase electroepitaxial growth of GaInAs, J.Ā Cryst. Growth 187, 51ā€“64 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  74. A.Ā Okamoto, S.Ā Isozumi, J.Ā Lagowski, H.C.Ā Gatos: In situ monitoring of liquid phase electroepitaxial growth, J.Ā Electrochem. Soc. 129, 2095ā€“2098 (1982)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadik Dost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dost, S. (2010). Liquid-Phase Electroepitaxy of Semiconductors. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_29

Download citation

Publish with us

Policies and ethics