Skip to main content

Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition

  • Chapter
  • 18k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

The properties of silicon carbide materials are first reviewed, with special emphasis on properties related to power device applications. Epitaxial growth methods for SiC are then discussed with emphasis on recent results for epitaxial growth by the hot-wall chemical vapor deposition method. The growth mechanism for maintaining the polytype, namely step-controlled epitaxy, is discussed. Also described is the selective epitaxial growth carried out on SiC at the authorʼs laboratory, including some unpublished work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APB:

antiphase boundaries

BOE:

buffered oxide etch

C–V:

capacitance–voltage

CVD:

chemical vapor deposition

DFW:

defect free width

DLTS:

deep-level transient spectroscopy

EBIC:

electron-beam-induced current

FET:

field-effect transistor

GSMBE:

gas-source molecular-beam epitaxy

HMDS:

hexamethyldisilane

JFET:

junction FET

LEO:

lateral epitaxial overgrowth

LPE:

liquid-phase epitaxy

MBE:

molecular-beam epitaxy

MOS:

metal–oxide–semiconductor

MOSFET:

metal–oxide–semiconductor field-effect transistor

MTS:

methyltrichlorosilane

NASA:

National Aeronautics and Space Administration

PIN:

positive intrinsic negative diode

PVT:

physical vapor transport

RF:

radiofrequency

RIE:

reactive ion etching

RPI:

Rensselaer Polytechnic Institute

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SF:

stacking fault

SOI:

silicon-on-insulator

UC:

universal compliant

VLSI:

very large-scale integrated circuit

VPE:

vapor-phase epitaxy

XPS:

x-ray photoelectron spectroscopy

XPS:

x-ray photoemission spectroscopy

References

  1. T.P. Chow: SiC and GaN high voltage power switching devices, Mater. Sci. Forum 338-342, 1155–1160 (2000)

    Article  Google Scholar 

  2. R.G. Humphreys, D. Bimberg, W.J. Choyke: Wavelength modulated absorption in SiC, Solid State Comm. 39, 163–167 (1981)

    Article  ADS  Google Scholar 

  3. W.J. Choyke, L. Patrick: Exciton recombination radiation and phonon spectrum of 6H-SiC, Phys. Rev. 127, 1868–1877 (1962)

    Article  ADS  Google Scholar 

  4. W.V. Münch, I. Pfaffeneder: Breakdown field in vapor grown silicon carbide p-n junctions, J. Appl. Phys. 48, 4831–4833 (1977)

    Article  ADS  Google Scholar 

  5. D.K. Ferry: High field transport in wide band gap semiconductors, Phys. Rev. B1 12, 2361–2369 (1975)

    Article  Google Scholar 

  6. R.P. Joshi: Monte Carlo calculations of the temperataure and field dependent electron transport parameters for 4H-SiC, J. Appl. Phys. 78, 5518–5521 (1995)

    Article  ADS  Google Scholar 

  7. E. Moruan, O. Noblanc, C. Dua, C. Brylinski: SiC microwave power devices, Mater. Sci. Forum 353–356, 669–674 (2001)

    Google Scholar 

  8. G.A. Slack: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond, J. Appl. Phys. 35, 3460 (1964)

    Article  ADS  Google Scholar 

  9. M. Bhatnagar, B.J. Baliga: Comparison of 6H-SiC, 3C-SiC and Si power devices, IEEE Trans. Electron. Dev. 40(3), 645–655 (1993)

    Article  ADS  Google Scholar 

  10. T. Kimoto, T. Urushidani, S. Kobayashi, H. Matsunami: High voltage SiC Schottky barrier diodes with low on-resistances, IEEE Electron. Dev. Lett. 14, 548–550 (1993)

    Article  ADS  Google Scholar 

  11. D. Alok, B.J. Baliga, P.K. Mclarty: A simple edge termination for silicon carbide devices with nearly ideal breakdown voltages, IEEE Electron. Dev. Lett. 15, 394–395 (1994)

    Article  ADS  Google Scholar 

  12. R.J. Trew, J.-B. Yan, P.M. Mock: The potential of diamond and SiC electronic devices for microwave and millimeter wave power applications, Proc. IEEE 79(5), 598–620 (1991)

    Article  ADS  Google Scholar 

  13. J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.R. Oakley: SiC JFET radiation response, IEEE Trans. Nucl. Sci. 39(6), 1974–1981 (1992)

    Article  ADS  Google Scholar 

  14. See for example, http://www.cree.com/ and http://www.infineon.com/

  15. H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)

    Article  Google Scholar 

  16. W.J. Choyke, G. Pensl: Physical properties of SiC, MRS Bull. 22(3), 25–29 (1997)

    Article  Google Scholar 

  17. C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang: Structural and electronic propertires of cubic, 2H, 4H and 6H SiC, Phys. Rev. B 49(7), 4485–4493 (1994)

    Article  ADS  Google Scholar 

  18. W.S. Yoo, H. Matsunami: Polytype-controlled single crystal growth of silicon carbide using 3C-6H solid state phase transformation, J. Appl. Phys. 70(11), 7124–7131 (1991)

    Article  ADS  Google Scholar 

  19. W.S. Yoo, H. Matsunami: Solid state phase transformation in cubic silicon carbide, Jpn. J. Appl. Phys. Part I (regular papers and short notes) 30, 545–553 (1991)

    Article  ADS  Google Scholar 

  20. A. Itoh, H. Matsunami: Single crystal growth of SiC and electronic devices, Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)

    Article  ADS  Google Scholar 

  21. P.G. Neudeck: Electrical impact of SiC structural defects on high electric field devices, Mater. Sci. Forum 338–342, 1161–1166 (2000)

    Article  Google Scholar 

  22. J.A. Powell, H.A. Will: Low temperature solid state phase transformations in 2H SiC, J. Appl. Phys. 43(4), 1400–1408 (1972)

    Article  ADS  Google Scholar 

  23. M. Dudley, X. Huang: Characterization of SiC using synchrotron white beam x-ray topography, Mater. Sci. Forum 338–342, 431–436 (2000)

    Article  Google Scholar 

  24. I. Kamata, H. Tsuchida, T. Jikimoto, K. Izumi: Structural transformation of screw dislocation via thick 4H-SiC epitaxial growth, Jpn. J. Appl. Phys. 39, 6496–6500 (2000)

    Article  ADS  Google Scholar 

  25. P. Pirouz: On micropipes and nanopipes in SiC and GaN, Philos. Mag. A 78, 727–736 (1998)

    Article  ADS  Google Scholar 

  26. P.G. Neudeck, H. Wei, M. Dudley: Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250  V) 4H-SiC pn junction diodes: DC properties, IEEE Trans. Electron. Dev. 46(3), 478–484 (1999)

    Article  ADS  Google Scholar 

  27. U. Zimmermann, A. Hallen, A.O. Konstantinov, B. Breitholtz: Investigation of microplasma breakdown in 4H SiC, Mater. Res. Soc. Symp. Proc. 512, 151–156 (1998)

    Article  Google Scholar 

  28. A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt: Study of Avalanche breakdown and impact ionization in 4H SiC, J. Electron. Mater. 27(4), 335–341 (1998)

    Article  ADS  Google Scholar 

  29. P.G. Neudeck, J.A. Powell: Performance limiting micropipe defects in SiC wafers, IEEE Electron. Dev. Lett. 15, 63–65 (1994)

    Article  ADS  Google Scholar 

  30. W. Si, M. Dudley, R. Glass, V. Tsvetkov, C. Carter Jr: Hollow core screw dislocations in 6H-SiC single crystals: A test of Frankʼs theory, J. Electon. Mater. 26, 128–133 (1997)

    Article  ADS  Google Scholar 

  31. W. Si, M. Dudley: Experimental studies of hollow core screw dislocations in 6H- and 4H-SiC single crystals, Mater. Sci. Forum 264–268, 429–432 (1998)

    Article  Google Scholar 

  32. C.M. Schnabel, M. Tabib-Azar, P.G. Neudeck, S.G. Bailey, H.B. Su, M. Dudle, R.P. Raffaelle: Correlation of EBIC and SWBXT imaged defects and epilayer growth pits in 6H-SiC Schottky diodes, Mater. Sci. Forum 338–342, 489–492 (2000)

    Article  Google Scholar 

  33. J.A. Powell, D.J. Larkin: Process induced morphological defects in epitaxial CVD silicon carbide, Phys. Status Solidi (b) 202, 529–548 (1997)

    Article  ADS  Google Scholar 

  34. T. Kimoto, N. Miyamoto, H. Matsunami: Performance limiting surface defects in SiC epitaxial pn junction diodes, IEEE Trans. Electron. Dev. 46(3), 471–477 (1999)

    Article  ADS  Google Scholar 

  35. S. Nishino, J.A. Powell, W. Will: Production of large area single crystal of 3C-SiC for semiconductor devices, Appl. Phys. Lett. 42, 460 (1983)

    Article  ADS  Google Scholar 

  36. S. Nishino, K. Matsumoto, Y. Chen, Y. Nishio: Epitaxial growth of 4H-SiC by sublimation close space technique, Mater. Sci. Eng. B 61/62, 121–124 (1999)

    Article  Google Scholar 

  37. H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si(001) at 900 °C using monomethylsilane gas source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)

    Article  Google Scholar 

  38. M.E. Okhuysen, M.S. Mazzola, Y.-H. Lo: Low temperature growth of 3C-SiC on silicon for advanced substrate development, Mater. Sci. Forum 338–342, 305–308 (2000)

    Article  Google Scholar 

  39. M.-A. Hasan, A. Faik, D. Purser, D. Lieu: Heteroepitaxy of 3C-SiC on Si (100) using porous Si as a compliant seed crystal, Tech. Dig. Int. Conf. SiC Relat. Mater. ICSCRM2001 (Tsukuba 2001) pp. 492–493

    Google Scholar 

  40. Y. Ishida, K. Kushibe, T. Takahashi, H. Okumura, S. Yoshida: 3C-SiC homoepitaxial growth by chemical vapor deposition and Schottky barrier junction characteristics, Mater. Sci. Forum 389–393, 275–278 (2002)

    Article  Google Scholar 

  41. H. Nagasawa, K. Yagi, T. Kawahara: 3C-SiC hetero-eptaxial growth on (001) Si undulant substrates, J. Cryst. Growth 237–239, 1244–1249 (2002)

    Article  Google Scholar 

  42. H. Nagasawa, K. Yagi, T. Kawahara, N. Hatta, G. Pensl, W.J. Choyke, T. Yamada, K.M. Itoh, A. Schoner: Silicon Carbide: Recent Major Advances (Springer, Berlin, Heidelberg 2004) p. 207

    Book  Google Scholar 

  43. F.R. Chien, S.R. Nutt, J.M. Carulli Jr., N. Bunchan, C.P. Beetz Jr., W.S. Yoo: Heteroepitaxial growth of beta SiC films on TiC substrates: Interface structure and defects, J. Mater. Res. 9(8), 2086–2095 (1994)

    Article  ADS  Google Scholar 

  44. C. Hallin, A.O. Konstantinov, O. Kordina, E. Janzen: Mechanism of cubic SiC nucleation on off-axis substrates, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 85–88 (1996)

    Google Scholar 

  45. J.A. Powell, D.J. Larkin, P.B. Abel, L. Zhou, P. Pirouz: Effect if tilt angle on the morphology of SIC epitaxial films grown on vicinal (0001) SiC substrates. In: Silicon Carbide and Related Materials, Inst. Phys. Conf. Ser., Vol. 142 (1995) pp. 77–80

    Google Scholar 

  46. V.F. Tsvetkov, S.T. Allen, H.S. Kong, C.H. Carter Jr.: Recent progress in SiC crystal growth, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 17–22 (1996)

    Google Scholar 

  47. D.J. Larkin: An overview of SiC epitaxial growth, MRS Bulletin 22(3), 36–41 (1997)

    Google Scholar 

  48. V. Heine, C. Cheng, R.J. Needs: The preference of SiC for growth in the metastable cubic form, J. Am. Ceram. Soc. 74, 2630–2633 (1991)

    Article  Google Scholar 

  49. K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Epitaxial growth of 4H-SiC on 4° off-axis (0001) and (000-1) substrates by hot wall CVD, Mater. Sci. Forum 527–529, 219–222 (2006)

    Article  Google Scholar 

  50. S. Rendakova, V. Ivantsov, V. Dmitriev: High quality 6H- and 4H-SiC pn structures with stable elelctric breakdown grown by liquid phase epitaxy, Mater. Sci. Forum 264–268, 163–166 (1998)

    Article  Google Scholar 

  51. D.H. Hofmann, M.H. Muller: Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals, Mater. Sci. Eng. B 61/62, 29–39 (1999)

    Article  Google Scholar 

  52. R. Yakimova, M. Syväjärvi, S. Redankova, V.A. Dimitriev, A. Henry, E. Janzen: Micropipe healing in liquid phase epitaxial growth of SiC, Mater. Sci. Forum 338–342, 237–240 (2000)

    Article  Google Scholar 

  53. A. Tanaka, T. Ataka, E. Ohkura, H. Katsuno: Growth modes of silicon carbide in low-temperature liquid phase epitaxy, Jpn. J. Appl. Phys. 43(11A), 7670–7671 (2004)

    Article  ADS  Google Scholar 

  54. O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker: Micropipe healing in SiC wafers by liquid-phase epitaxy in Si–Ge melts, J. Cryst. Growth 271, 142–150 (2004)

    Article  ADS  Google Scholar 

  55. T. Hatayama, S. Nakamura, K. Kurobe, T. Kimoto, T. Fuyuki, H. Matsunami: High-temperature surface structure transitions and growth of alpha-SiC (0001) in ultrahigh vacuum, Mater. Sci. Eng. B 61/62, 135–138 (1999)

    Article  Google Scholar 

  56. S. Nakamura, T. Hatayama, T. Kimoto, T. Fuyuki, H. Matsunami: Growth of SiC on 6H-SiC 011̄4 substrates by gas source molecular beam epitaxy, Mater. Sci. Forum 338–342, 201–204 (2000)

    Article  Google Scholar 

  57. T. Sugii, T. Aoyama, T. Ito: Low-temperature growth of beta-SiC on Si by gas-source MBE, J. Electrochem. Soc. 137(3), 989–992 (1990)

    Article  Google Scholar 

  58. H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si (001) at 900 °C using monomethylsilane gas-source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)

    Article  Google Scholar 

  59. C. Hallin, I.G. Ivanov, T. Egillson, A. Henry, O. Kordina, E. Jansen: The material quality of CVD grown SiC using various precursors, J. Cryst. Growth 183, 163 (1998)

    Article  ADS  Google Scholar 

  60. Y. Gao, J.H. Edgar: Selective epitaxial growth of SiC: Thermodyanamic analysis of the Si-C-Cl-H and Si-C-Cl-H-O systems, J. Electrochem. Soc. 144(5), 1875–1880 (1997)

    Article  Google Scholar 

  61. K. Yagi, H. Nagasawa: 3C-SiC growth by alternate supply of SiH_2Cl_2 and C_2H_2, J. Cryst. Growth 174, 653–657 (1997)

    Article  ADS  Google Scholar 

  62. T. Miyanagi, S. Nishino: Hotwall CVD growth of 4H-SiC using Si2Cl6-C3H8-H2 system, Mater. Sci. Forum 389–393, 199–202 (2002)

    Article  Google Scholar 

  63. C. Sartel, V. Souliere, Y. Monteil, H. El-Harrouni, J.M. Bluet, G. Guillot: Epitaxial growth of 4H-SiC with hexamethyldisilane, Mater. Sci. Forum 389–393, 263–266 (2002)

    Article  Google Scholar 

  64. R. Rodriguez-Clemente, A. Figueras, S. Garelik, B. Armas, C. Combescure: Influence of temperature and tetramethylsilane partial pressure on the beta SiC depositin by cold wall chemical vapor deposition, J. Cryst. Growth 125, 532–542 (1992)

    Article  ADS  Google Scholar 

  65. T. Hatayama, H. Yano, Y. Uraoka, T. Fuyuki: High purity SiC epitaxial growth by chemical vapor deposition using CH_3SiH_3 and C_3H_3 sources, Mater. Sci. Forum 527–529, 203–206 (2006)

    Article  Google Scholar 

  66. See for example, http://www.saespuregas.com/

  67. H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)

    Article  Google Scholar 

  68. S. Nakamura, T. Kimoto, H. Matsunami: Fast growth and doping characteristics of SiC in a horizontal cold wall CVD, Mater. Sci. Forum 389–393, 183–186 (2002)

    Article  Google Scholar 

  69. R. Rupp, A. Wiedenhofer, P. Friedrichs, D. Peters, R. Schorner, D. Stephani: Growth of SiC epitaxial layers in a vertical cold wall reactor suited for high voltage applications, Mater. Sci. Forum 264–268, 89–96 (1998)

    Article  Google Scholar 

  70. C. Sartel, J.M. Bluet, V. Souliere, I. EI-Harrouni, Y. Monteil, M. Mermoux, G. Guillot: Characterization of homoepitaxial 4H-SiC layer grown from silane/propane system, Mater. Sci. Forum 433–436, 165–168 (2003)

    Article  Google Scholar 

  71. B. Thomas, W. Bartsch, R. Stein, R. Schorner, D. Stephani: Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications, Mater. Sci. Forum 457–460, 181–184 (2004)

    Article  Google Scholar 

  72. O. Kordina, C. Hallin, A. Henry, J.P. Bergman, I. Ivanov, A. Ellison, N.T. Son, E. Janzen: Growth of SiC by hot-wall, CVD and HTCVD, Phys. Status Solidi (b) 202, 321–334 (1996)

    Article  ADS  Google Scholar 

  73. T. Kimoto, S. Nakazawa, K. Fujihira, T. Hirao, S. Nakamura, Y. Chen, H. Matsunami: Recent achievement and future challenges in SiC homoepitaxial growth, Mater. Sci. Forum 389–393, 165–170 (2002)

    Article  Google Scholar 

  74. A. Shoner, A. Konstantinov, S. Karlsson, R. Berge: Highly uniform epitaxial SiC-layer growth in a hot wall CVD reactor with mechanical rotation, Mater. Sci. Forum 389–393, 187–190 (2002)

    Article  Google Scholar 

  75. B. Thomas, C. Hecht: Epitaxial growth of n-type 4H-SiC on 3, wafers for power devices, Mater. Sci. Forum 483–485, 141–146 (2005)

    Article  Google Scholar 

  76. A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J.P. Bergman, Y.N. Makarov, A. Vorobʼev, A. Vehanen, E. Janzen: High temperature CVD growth of SiC, Mater. Sci. Eng. B 61/62, 113–120 (1999)

    Article  Google Scholar 

  77. H. Fujiwara, K. Danno, T. Kimoto, T. Tojo, H. Matsunami: Fast epitaixal growth of thick 4H-SiC with specular surface by chimney-type vertical hot-wall chemical vapor depositon, Mater. Sci. Forum 457–460, 205–208 (2004)

    Article  Google Scholar 

  78. E. Janzén, J.P. Bergman, Ö. Danielsson, U. Forsberg, C. Hallin, J. ul Hassan, A. Henry, I.G. Ivanov, A. Kakanakova-Georgieva, P. Persson, Q. ul Wahab: SiC and III-nitride growth in a hot-wall CVD reactor, Mater. Sci. Forum 483–485, 61–66 (2005)

    Article  Google Scholar 

  79. K. Danno, T. Kimoto, K. Asano, Y. Sugawara, H. Matsunami: Fast epitaxial growth of high-purity 4H-SiC(0001) in a vertical hot-wall chemical vapor deposition, J. Electron. Mater. 34(4), 324–329 (2005)

    Article  ADS  Google Scholar 

  80. H. Fujiwara, T. Kimoto, T. Tojo, H. Matsunami: Reduction of stacking faults in fast epitaxial growth of 4H-SiC and its impacts on high-voltage Schottky diodes, Mater. Sci. Forum 483–485, 151–154 (2005)

    Article  Google Scholar 

  81. I. Bhat, Canhua Li: High growth rate epitaxy of SiC in a vertical hotwall reactor, unpublished

    Google Scholar 

  82. M. Syvajarvi, R. Yakimova, H. Jacobsson, M.K. Linnarsson, A. Henry, E. Janzén: High growth rate epitaxy of thick 4H-SiC layers, Mater. Sci. Forum 338–342, 165–168 (2000)

    Article  Google Scholar 

  83. T. Furusho, T. Miyanagi, Y. Okui, S. Ohshima, S. Nishino: Homoepitaxial growth of cubic silicon carbide by sublimation epitaxy, Mater. Sci. Forum 389–393, 279–282 (2002)

    Article  Google Scholar 

  84. E.O. Sveinbjornsson, H.O. Olafsson, G. Gudjonsson, F. Allerstam, P.A. Nilsson, M. Syvajarvi, R. Yakimova, C. Hallin, T. Rodle, R. Jos: High field effect mobility in Si face 4H-SiC MOSFET made on sublimation grown epitaxial material, Mater. Sci. Forum 483–485, 841–844 (2005)

    Article  Google Scholar 

  85. D. Ziane, J.M. Bluet, G. Guillot, P. Godignon, J. Monserrat, R. Ciechonski, M. Syvajarvi, R. Yakimova, L. Chen, P. Mawby: Characterizations of SiC/SiO_2 interface quality toward high power MOSFETs realization, Mater. Sci. Forum 457–460, 1281–1286 (2004)

    Article  Google Scholar 

  86. R.C. Glass, P. Lu, J.H. Edgar, O.J. Glembocki, P.B. Klein, E.R. Glaser, J. Perrin, J. Chaudhuri: High-speed homoepitaxy of SiC from methyltrichloro-silane by CVD, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005)

    Google Scholar 

  87. R. Myers, O. Kordina, Z. Shishkin, F. Yan, R.P. Devaty, S.E. Saddow: Effects of HCl addictive on the growth rate of 4H-SiC in a hot wall CVD reactor, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005)

    Google Scholar 

  88. A. Veneroni, F. Omarini, M. Masi: Silicon carbide growth mechanisms from SiH_4, SiHCl_3 and nC_3H_8, Cryst. Growth Technol. 40(10/11), 967–971 (2005)

    Article  Google Scholar 

  89. G. Pensl, W.J. Choyke: Electrical and optical characterization of SiC, Physica B 185, 264–283 (1993)

    Article  ADS  Google Scholar 

  90. R. Wang, I. Bhat, unpublished results

    Google Scholar 

  91. D.J. Larkin: SiC dopant incorporation control by site competetion CVD, Phys. Status Solidi (b) 202, 305–320 (1997)

    Article  ADS  Google Scholar 

  92. T. Troffer, C. Peppermuller, G. Pensi, K. Rottner, A. Schoner: Phosphorus-related donors in 6H-SiC generated by ion implantation, J. Appl. Phys. 80(7), 3739–3743 (1996)

    Article  ADS  Google Scholar 

  93. M.A. Capano, J.A. Cooper Jr., M.R. Melloch, A. Saxler, W.C. Mitchel: Ionization energies and electron mobililties in phosphorous and nitrogen implanted SiC, J. Appl. Phys. 87(12), 8773–8777 (2000)

    Article  ADS  Google Scholar 

  94. S. Rao, T.P. Chow, I. Bhat: Dependence of the ionization energy of phosphorous donor in 4H-SiC on doping concentration, Mater. Sci. Forum 527–529, 597–600 (2006)

    Article  Google Scholar 

  95. R. Wang: SiC epitaxial growth for power device applications. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy 2002)

    Google Scholar 

  96. M.H. Anikin, A.A. Lebedev, A.L. Syrkin, A.V. Suvorov: Investigation of deep levels in SiC by capacitance spectroscopy methods, Sov. Phys. Semicond. 19, 69–71 (1985)

    Google Scholar 

  97. W. Suttrop, G. Pensi, P. Lanig: Boron related deep centers in SiC, Appl. Phys. A 51, 231–237 (1990)

    Article  ADS  Google Scholar 

  98. A. Golz, G. Horstmann, E. Stein von Kamienski, H. Kurz: Oxidation kinetics of 3C, 4H and 6H silicon carbide, Proc. Sixth Int. Conf. Silicon Carbide Relat. Mater. (1996) pp. 633–636

    Google Scholar 

  99. K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Improved surface morphology and background doping concentration in 4H-SiC (0001̄) epitaxial growth by hot-wall CVD, Mater. Sci. Forum 483–485, 85–88 (2005)

    Article  Google Scholar 

  100. T. Yamamoto, T. Kimoto, H. Matsunami: Impurity incorporation mechanism in step-controlled epitaxy growth temperature and substrate off-angle dependence, Mater. Sci. Forum 264–268, 111–116 (1998)

    Article  Google Scholar 

  101. U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Nitrogen doping of epitaxial silicon carbide, J. Cryst. Growth 236(1–3), 101–112 (2002)

    Article  ADS  Google Scholar 

  102. U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Aluminium doping of epitaxial silicon carbide, J. Cryst. Growth 253(1–4), 340–350 (2003)

    Article  ADS  Google Scholar 

  103. T. Kimoto, T. Yamamoto, Z.Y. Chen, H. Matsunami: 4H-SiC (112̄0) epitaxial growth, Mater. Sci. Forum 338–342, 189–192 (2000)

    Article  Google Scholar 

  104. T. Kimoto, K. Hashimoto, K. Fujihira, K. Danno, S. Nakamura, Y. Negoro, H. Matsunami: Epitaxial growth and characterization of 4H-SiC(112̄0) and (033̄8), Mater. Res. Soc. Symp. Proc. 742, 3–13 (2003)

    Google Scholar 

  105. Z. Zhang, Y. Gao, A.C. Arjunan, E.Y. Toupitsyn, P. Sadagopan, R. Kennedy, T.S. Sudarshan: CVD growth and characterization of 4H-SiC epitaxial film on (112̄0) as-cut substrates, Mater. Sci. Forum 483–485, 113–116 (2005)

    Article  Google Scholar 

  106. K. Nakayama, Y. Miyanagi, H. Shiomi, S. Nishino, T. Kimoto, H. Matsunami: The development of 4H-SiC 033̄8 wafers, Mater. Sci. Forum 389–393, 123–127 (2002)

    Article  Google Scholar 

  107. T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: Complete micropipe dissociation in 4H-SiC (03-38) epitaxial growth and its impact on reverse characteristics of Schottky barrier diodes, Mater. Sci. Forum 433–436, 197–200 (2003)

    Article  Google Scholar 

  108. T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: SiC epitaxy on non-standard surfaces, Mater. Sci. Forum 433–436, 125–130 (2003)

    Google Scholar 

  109. E. Arnold, D. Alok: Effect of interface states on electron transport in 4H–SiC inversion layers, IEEE Trans. Electron. Dev. 48, 1870–1877 (2001)

    Article  ADS  Google Scholar 

  110. T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, H. Matsunami: Interface properties of metal–oxide–semiconductor structures on 4H-SiC {0001} and (112̄0) formed by N_2O oxidation, Jpn. J. Appl. Phys. 44(3), 1213–1218 (2005)

    Article  ADS  Google Scholar 

  111. K. Fukuda, J. Senzaki, K. Kojima, T. Suzuki: High inversion channel mobility of MOSFET fabricated on 4H-SiC C(0001̄) face using H_2 post-oxidation annealing, Mater. Sci. Forum 433–436, 567–570 (2003)

    Article  Google Scholar 

  112. T. Kimoto, H. Kawano, J. Suda: 1200V-class 4H-SiC RESURF MOSFETs with low on-resistances, Proc. 17th Int. Symp. Power Semicond. Devices ICʼs (2005) pp. 159–162

    Google Scholar 

  113. N. Nordell, S. Karlsson, A.O. Kenstantinov: Growth of 4H and 6H SiC in trenches and around stripe mesas, Mater. Sci. Forum 264–268, 131–134 (1998)

    Article  Google Scholar 

  114. Y. Chen, T. Kimoto, Y. Takeuchi, R.K. Malhan, H. Matsunami: Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor deposition, Jpn. J. Appl. Phys. 43(7A), 4105–4109 (2004)

    Article  ADS  Google Scholar 

  115. P.G. Neudeck, J.A. Powell, G.M. Beheim, E.L. Benavage, P.B. Abel, A.J. Trunek, D.J. Spry, M. Dudley, W.M. Vetter: Enlargement of step-free SiC surfaces by homoepitaxial web growth of thin SiC cantilevers, J. Appl. Phys. 92, 2391–2400 (2002)

    Article  ADS  Google Scholar 

  116. P.G. Neudeck, A.J. Trunek, D.J. Spry, J.A. Powell, H. Du, M. Skowronski, N.D. Bassim, M.A. Mastro, M.E. Twigg, R.T. Holm, R.L. Henry, C.R. Eddy Jr.: Recent results from epitaxial growth on step free 4H-SiC mesas, Mater. Res. Soc. Symp. Proc. 911, B08–03 (2006)

    Article  Google Scholar 

  117. P.G. Neudeck, A.J. Powell: Homoepitaxial and heteroepitaxial growth on step-free SiC mesas. In: Silicon Carbide: Recent Major Advances, ed. by W.J. Choyke, H. Matsunami, G. Pensi (Springer, New York 2003) p. 179

    Google Scholar 

  118. N.D. Bassima, M.E. Twigg, M.A. Mastro, C.R. Eddy Jr., T.J. Zega, R.L. Henry, J.C. Culbertson, R.T. Holm, P. Neudeck, J.A. Powell, A.J. Trunek: Dislocations in III-nitride films grown on 4H-SiC mesas with and without surface steps, J. Cryst. Growth 304, 103–107 (2007)

    Article  ADS  Google Scholar 

  119. M.R. Goulding: Selective epitaxial growth of silicon, Mater. Sci. Eng. B 17(1–3), 47–67 (1993)

    Article  Google Scholar 

  120. D. Kapolnek, S. Keller, R. Vetury, R.D. Underwood, P. Kozodoy, S.P. Den Baars, U.K. Mishra: Anisotropic epitaxial lateral growth in GaN selective area epitaxy, Appl. Phys. Lett. 71(9), 1204–1206 (1997)

    Article  ADS  Google Scholar 

  121. O. Nam, T.S. Zheleva, M.D. Bremser, R.F. Davis: Lateral epitaxial overgrowth of GaN films on SiO_2 areas via metalorganic vapor phase epitaxy, J. Electron. Mater. 27(4), 233–237 (1998)

    Article  ADS  Google Scholar 

  122. Y. Ohshita: Low temperature and selective growth of β-SiC using the SiH_2Cl_2/i-C_4H_10/HCl/H_2, Appl. Phys. Lett. 57(6), 605–607 (1990)

    Article  ADS  Google Scholar 

  123. J.H. Edgar, Y. Gao, J. Chaudhuri, S. Cheema, P.W. Yip, M.V. Sidorov: Selective epitaxial growth of silicon carbide on SiO_2 masked Si(100): The effects of temperature, J. Appl. Phys. 84(1), 201–204 (1998)

    Article  ADS  Google Scholar 

  124. K. Teker: Selective epitaxial growth of 3C-SiC on patterned Si using hexamethyldisilane by APCVD, J. Cryst. Growth 257(3/4), 245–254 (2003)

    Article  ADS  Google Scholar 

  125. S. Nishino, C. Jacob, Y. Okui, S. Ohshima, Y. Masuda: Lateral over-growth of 3C-SiC on patterned Si(111) substrates, J. Cryst. Growth 237–239(2), 1250–1253 (2002)

    Article  Google Scholar 

  126. A.R. Bushroa, C. Jacob, H. Saijo, S. Nishino: Lateral epitaxial overgrowth and reduction in defect density of 3C-SiC on patterned Si substrates, J. Cryst. Growth 271(1/2), 200–206 (2004)

    Article  ADS  Google Scholar 

  127. E. Eshun, C. Taylor, M.G. Spencer, K. Kornegay, I. Ferguson, A. Gurray, R. Stall: Homoepitaxial and selective area growth of 4H and 6H silicon carbide using a resistively heated vertical reactor, Mater. Res. Soc. Symp. 572, 173–178 (1999)

    Article  Google Scholar 

  128. Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Homoepitaxial mesa structures on 4H-SiC (0001) and (112̄0) substrates by chemical vapor deposition, J. Cryst. Growth, 254, 115–122 (2003)

    Article  ADS  Google Scholar 

  129. Y. Khlebnikov, I. Khlebnikov, M. Parker, T.S. Sudarshan: Local epitaxy and lateral epitaxial overgrowth of SiC, J. Cryst. Growth 233, 112–120 (2001)

    Article  ADS  Google Scholar 

  130. R. Zhang, I. Bhat: Atomic force microscopy studies of CdTe films grown by epitaxial lateral overgrowth, J. Electron. Mater. 30(11), 1370–1375 (2001)

    Article  ADS  Google Scholar 

  131. B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura: Defect reduction in m-plane gallium nitride via lateral epitaxial overgrowth by hydride phase epitaxy, Appl. Phys. Lett. 86(11), 111917–1–111917–3 (2005)

    Article  ADS  Google Scholar 

  132. A.A. Burk Jr., M.J. OʼLoughlin, H.D. Nordby Jr.: SiC epitaxial layer growth in a novel multi-wafer vapor-phase epitaxial (VPE) reactor, J. Cryst. Growth 200, 458–466 (1999)

    Article  ADS  Google Scholar 

  133. L.B. Rowland, G.T. Dunne, J.A. Freitas Jr.: Initial results on thick 4H-SiC epitaxial layers grown using vapor phase epitaxy, Mater. Sci. Forum 338–342, 161–164 (2000)

    Article  Google Scholar 

  134. G.R. Gruzalski, D.M. Zehner: Defect states in substoichiometric tantalum carbide, Phys. Rev. B 34(6), 3841–3848 (1986)

    Article  ADS  Google Scholar 

  135. A.K. Dua, V.C. George: TaC coatings prepared by hot filament chemical vapour deposition: Characterization and properties, Thin Solid Films 247, 34–38 (1994)

    Article  ADS  Google Scholar 

  136. Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Selective homoepitaxy of 4H-SiC on (0001) and (112̄0) masked substrates, J. Cryst. Growth 237–239, 1224–1229 (2002)

    Article  Google Scholar 

  137. Y. Fukai: The Metal-Hydrogen System, 2nd edn. (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwara B. Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bhat, I.B. (2010). Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_28

Download citation

Publish with us

Policies and ethics