Skip to main content

Hydrothermal and Ammonothermal Growth of ZnO and GaN

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

Zinc oxide (ZnO) and gallium nitride (GaN) are wide-bandgap semiconductors with a wide array of applications in optoelectronic and electronics. The lack of low-cost, low-defect ZnO and GaN substrates has slowed development and hampered performance of devices based on these two materials. Their anisotropic crystal structure allows the polar solvents, water and ammonia, to dissolve and crystallize ZnO and GaN at high pressure. Applying the techniques used for hydrothermal production of industrial single-crystal quartz to ZnO and GaN opens a pathway for the inexpensive growth of relatively larger crystals that can be processed into semiconductor wafers. This chapter will focus on the specifics of the hydrothermal growth of ZnO and the ammonothermal growth of GaN, emphasizing requirements for industrial scale growth of large crystals. Phase stability and solubility of hydrothermal ZnO and ammonothermal GaN is covered. Modeling of thermal and fluid flow gradients is discussed and simulations of thermal and temperature profiles in research-grade pressure systems are shown. Growth kinetics for ZnO and GaN respectively are reviewed with special interest in the effects of crystalline anisotropy on thermodynamics and kinetics. Finally, the incorporation of dopants and impurities in ZnO and GaN and how their incorporation modifies electrical and optical properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALUM:

aluminum potassium sulfate

CL:

cathode-ray luminescence

CL:

cathodoluminescence

CMOS:

complementary metal–oxide–semiconductor

DMS:

discharge mass spectroscopy

DVD:

digital versatile disk

EPR:

electron paramagnetic resonance

FWHM:

full width at half-maximum

GDMS:

glow-discharge mass spectrometry

GS:

growth sector

HPAT:

high-pressure ammonothermal technique

HVPE:

halide vapor-phase epitaxy

HVPE:

hydride vapor-phase epitaxy

IR:

infrared

KDP:

potassium dihydrogen phosphate

LED:

light-emitting diode

MMIC:

monolithic microwave integrated circuit

MOCVD:

metalorganic chemical vapor deposition

MOCVD:

molecular chemical vapor deposition

PL:

photoluminescence

PT:

pressure–temperature

RF:

radiofrequency

SAW:

surface acoustical wave

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SIMS:

secondary-ion mass spectrometry

SWBXT:

synchrotron white beam x-ray topography

TDMA:

tridiagonal matrix algorithm

UV:

ultraviolet

References

  1. F. Bernardini, V. Fiorentini, D. Vanderbilt: Spontaneous polarization and piezoelectric contants of III-V nitrides, Phys. Rev. B 56(R10), 24–27 (1997)

    Google Scholar 

  2. S.J. Pearton, C.R. Abernathy, F. Ren: Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, Berlin Heidelberg 2006)

    Google Scholar 

  3. B. Gil: Low-Dimensional Nitride Semiconductors (Oxford Univ. Press, Oxford 2002)

    Google Scholar 

  4. C. Jagadish, S.J. Pearton: Zinc Oxide, Thin Films and Nanostructions: Processing, Properties, and Applications (Elsevier Science, Amsterdam 2006)

    Google Scholar 

  5. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avruntin, S.-J. Cho, H. Morkoç: A comprehensive review of ZnO material and devices, Appl. Phys. Rev. 98(041301), 1–103 (2005)

    Google Scholar 

  6. I. Akasaki: Key inventions in the history of nitride-base blue LED and LD, J. Cryst. Growth 300, 2–10 (2007)

    Article  ADS  Google Scholar 

  7. C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt: ZnO rediscovered – once again!?, Superlattice Microstruct. 38, 209–222 (2005)

    Article  ADS  Google Scholar 

  8. H.J. Scheel: Historical aspects of crystal growth technology, J. Cryst. Growth Technol. 211, 1–12 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Nause, B. Nemeth: Pressurized melt growth of ZnO boules, Semicond. Sci. Technol. 20, S45–S48 (2005)

    Article  ADS  Google Scholar 

  10. J. Karpiński, J. Jun, S. Porowski: High pressure thermodynamics of GaN, J. Cryst. Growth 66, 1–10 (1984)

    Article  ADS  Google Scholar 

  11. H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma: Phonon replicas in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. Lett. 91(10), 6450–6457 (2002)

    ADS  Google Scholar 

  12. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch: Electrical properties of bulk ZnO, Solid-State Commun. 105, 399–401 (1998)

    Article  ADS  Google Scholar 

  13. D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, T. Fukuda: Solvothermal growth of ZnO, Prog. Cryst. Growth Charact. Mater. 52, 280–335 (2006)

    Article  Google Scholar 

  14. D.A. Kramer: Nitrogen (fixed) Ammonia. In: US Geological Survey, ed. by US Department of the Interior (United States Government Printing Office, Washington 2005) pp. 116–117

    Google Scholar 

  15. K. Byrappa, M. Yoshimura: Handbook of Hydrothermal Technology (William Andrew, New York 2001)

    Google Scholar 

  16. M.T. Harris, J.J. Larkin, J.J. Martin: Low-defect colorless Bi_12SiO_20 grown by hydrothermal techniques, Appl. Phys. Lett. 60, 2162–2163 (1992)

    Article  ADS  Google Scholar 

  17. T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura: Ammonothermal growth of GaN on an over-1-inch seed crystal, Jpn. J. Appl. Phys. 44, L1570–1572 (2005)

    Article  ADS  Google Scholar 

  18. R.A. Laudise: Hydrothermal Growth in The Growth of Single Crystals (Prentice-Hall, New Jersey 1970) pp. 275–293

    Google Scholar 

  19. H. Jacobs, D. Schmidt: High-pressure ammonolosis in solid-state chemistry. In: Current Topics in Materials Science, Vol. 8, ed. by E. Kaldis (North Holland, Amsterdam 1982) pp. 381–427

    Google Scholar 

  20. B. Wang, M.J. Callahan: Ammonothermal synthesis of III-nitride crystals, Cryst. Growth Des. 6(6), 1227–1246 (2006)

    Article  Google Scholar 

  21. M. Suscavage, M. Harris, D. Bliss, P. Yip, S.Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D.C. Look, D.C. Reynolds, R.L. Jones, C.W. Litton: High quality ZnO crystal, Mater. Res. Soc. Symp. Proc. 537, 294–299 (1999)

    Google Scholar 

  22. R. R. Monchamp, R. C. Puttbach, J. W. Nielson: Hydrothermal growth of ZnO crystals (Airtron Division of Litton Industries, Morris Plains, technical report AFML-TR-67-144 1967)

    Google Scholar 

  23. R.A. Laudise, E.D. Kolb: The solubity of zincite in basic hydrothermal solvents, Am. Mineral. 48(3), 642–648 (1963)

    Google Scholar 

  24. D.F. Croxall, R.C.C. Ward, C.A. Wallace, R.C. Kell: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth 22, 117 (1974)

    Article  ADS  Google Scholar 

  25. N. Sakagami: Hydrothermal growth and characterization of ZnO single crystals of high purity, J. Cryst. Growth 99, 905–909 (1990)

    Article  ADS  Google Scholar 

  26. L. Demianets, D. Kostomaro: Mechanism of zinc oxide single crystal growth under hydrothermal conditions, Ann. Chim. Sci. Mater. 26(1), 193–198 (2001)

    Article  Google Scholar 

  27. I.P. Kuzʼmina, A.N. Lobachev, N.S. Triodina: Synthesis of Zincite by the Hydrothermal Method in Crystallization Process Under Hydrothermal Conditions (Nauka, Moscow 1973) pp. 27–41

    Book  Google Scholar 

  28. T. Fukuda, D. Ehrentraut: Prospects for the ammonothermal growth of large GaN crystals, J. Cryst. Growth 305, 304–310 (2007)

    Article  ADS  Google Scholar 

  29. E.V. Kortunova, P.P. Chvanski, N.G. Nikolaeva: The first attempts of industrial manufacture of ZnO single crystals, J. Phys. IV France 126, 39–42 (2005)

    Article  Google Scholar 

  30. L.E. McCandlish, R. Urhin: Mild conditions for hydrothermal growth of ZnO with potential for p-type semiconductor behavior, Poster Presentation at 5th Int. Conf. Solvotherm. React. Conf (East Brunswick, 2002), image supplied directly by L.E. McCandlish

    Google Scholar 

  31. G.F. Hüttig, H. Möldner: The specific heat of crystallized zinc hydroxide and calculation of the affinities between zinc oxide and water, Z. Anorg. Chem. 211, 368–378 (1933)

    Article  Google Scholar 

  32. C.H. Lu, C.H. Yeh: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int. 26, 351–357 (2000)

    Article  Google Scholar 

  33. R.A. Laudise, A.A. Ballman: Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem. 64(5), 688–691 (1960)

    Article  Google Scholar 

  34. M.M. Lencka, R.E. Riman: Synthesis of lead titanate: thermodynamic modeling and experimental verification, J. Am. Ceram. Soc. 76, 2649–2659 (1993)

    Article  Google Scholar 

  35. M.M. Lencka, A. Anderko, R.E. Riman: Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc. 78, 2609–2618 (1995)

    Article  Google Scholar 

  36. M.M. Lencka, R.E. Riman: Themodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater. 5, 61–70 (1993)

    Article  Google Scholar 

  37. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, J.M. Baranowski, M. Kaminska: AMMONO method of GaN and AlN production, Diam. Relat. Mater. 7, 1348–1350 (1998)

    Article  ADS  Google Scholar 

  38. A.P. Purdy: Ammonothermal sythesis of cubic gallium nitride, Chem. Mater. 11, 1648–1651 (1999)

    Article  Google Scholar 

  39. D.R. Ketchum, J.W. Kolis: Crystal growth of gallium nitride in supercritical ammonia, J. Cryst. Growth 222, 431–434 (2001)

    Article  ADS  Google Scholar 

  40. A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, K. Oshima: Crystal growth of GaN by ammonothermal method, J. Cryst. Growth 260, 67–72 (2004)

    Article  ADS  Google Scholar 

  41. Y.C. Lan, X.L. Chen, M.A. Crimp, Y.G. Cao, Y.P. Xu, T. Xu, K.Q. Lu: Single crystal growth of gallium nitride in supercritical ammonia, Phys. Status Solidi (c) 2(7), 2066–2069 (2005)

    Article  ADS  Google Scholar 

  42. B. Wang, M.J. Callahan, K. Rakes, D.F. Bliss, L.O. Bouthillette, S.-Q. Wang, J.W. Kolis: Ammonothermal growth of GaN crystals in alkaline solutions, J. Cryst. Growth 287, 376–380 (2006)

    Article  ADS  Google Scholar 

  43. Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, N. Hoshino, T. Fukuda, S. Kawabata, K. Inaba: Ammonothermal epitaxy of thick GaN film using NH_4Cl mineralizer, Jpn. J. Appl. Phys. 45(5A), 4018–4020 (2006)

    Article  ADS  Google Scholar 

  44. D. Peters: Ammonothermal synthesis of aluminium nitride, J. Cryst. Growth 104, 411–418 (1990)

    Article  ADS  Google Scholar 

  45. B. Wang, M.J. Callahan: Transport growth of GaN crystals by the ammonothermal technique using various nutrients, J. Cryst. Growth 291, 455–460 (2006)

    Article  ADS  Google Scholar 

  46. A.P. Purdy, R.J. Jouet, F.G. Clifford: Ammonothermal recrystallization of gallium nitride with acidic mineralizers, Cryst. Growth Des. 2(2), 141–145 (2002)

    Article  Google Scholar 

  47. D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata: Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions, J. Mater. Chem. 17, 886–893 (2007)

    Article  Google Scholar 

  48. B. Raghothamachar, W.M. Vetter, M. Dudley, R. Dalmau, R. Schlesser, Z. Sitar, E. Michael, J.W. Kolis: Synchrontron white beam topography charctrization of physical vapor transport grown AlN and ammonothermal GaN, J. Cryst. Growth 246, 271–280 (2002)

    Article  ADS  Google Scholar 

  49. A.P. Purdy, S. Case, N. Murastore: Synthesis of GaN by high-pressure ammonolysis of gallium triiodide, J. Cryst. Growth 252, 136–143 (2003)

    Article  ADS  Google Scholar 

  50. T. Hashimoto, K. Fujito, R. Sharma, E.R. Letts, P.T. Fini, J.S. Speck, S. Nakamura: Phase selection of microcrystalline GaN synthesized in supercritical ammonia, J. Cryst. Growth 291, 100–106 (2006)

    Article  ADS  Google Scholar 

  51. A. Purdy: Growth of cubic GaN crystals from hexagonal GaN feedstock, J. Cryst. Growth 281, 355–363 (2005)

    Article  ADS  Google Scholar 

  52. A.N. Mariano, R.E. Hanneman: Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34, 384–389 (1963)

    Article  ADS  Google Scholar 

  53. B. Wang, M.J. Callahan, L.O. Bouthillette: Hydrothermal growth and photoluminescence of Zn_1-xMg_xO alloy crystals, Cryst. Growth Des. 6, 1256–1260 (2006)

    Article  Google Scholar 

  54. M. J. Callahan, B. Wang, unpublished results

    Google Scholar 

  55. Q.-S. Chen, V. Prasad, W.R. Hu: Modeling of ammonothermal growth of nitrides, J. Cryst. Growth 258, 181–187 (2003)

    Article  ADS  Google Scholar 

  56. M. Carr: Penetrative convection in a superposed porous-medium-fluid layer via internal heating, J. Fluid Mech. 509, 305–329 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. V. Prasad: Convective flow interaction and heat transfer between fluid and porous layers. In: Convective Heat and Mass Transfer in Porous Media, ed. by S. Kakaç, B. Kilkiş, F.A. Kulacki, F. Arinç (Kluwer, Netherlands 1991) pp. 563–615

    Chapter  Google Scholar 

  58. Q.-S. Chen, V. Prasad, A. Chatterjee, J. Larkin: A porous media-based transport model for hydrothermal growth, J. Cryst. Growth 198/199, 710–715 (1999)

    Article  ADS  Google Scholar 

  59. Q.-S. Chen, V. Prasad, A. Chatterjee: Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory, J. Heat Transf. 121, 1049–1058 (1999)

    Article  Google Scholar 

  60. H. Zhang, V. Prasad, M.K. Moallemi: Numerical algorithm using multizone adaptive grid generation for multiphase transport processes with moving and free boundaries, Num. Heat Transf. 29(B), 399–421 (1996)

    Article  ADS  Google Scholar 

  61. H. Zhang, V. Prasad: An advanced numerical scheme for materials process modeling, Comput. Model. Simul. Eng. 2, 322–343 (1997)

    Google Scholar 

  62. Q.-S. Chen, S. Pendurti, V. Prasad: Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides, J. Cryst. Growth 266, 271–277 (2004)

    Article  ADS  Google Scholar 

  63. A.J. Chapman: Heat Transfer (Macmillan, New York 1984)

    Google Scholar 

  64. M. Callahan, B.-G. Wang, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, S.-Q. Wang: GaN single crystals grown on HVPE seeds in alkaline supercritical ammonia, J. Mater. Sci. 41, 1399–1407 (2006)

    Article  ADS  Google Scholar 

  65. Q.-S. Chen, S. Pendurti, V. Prasad: Modeling of ammonothermal growth of gallium nitride single crystals, J. Mater. Sci. 41, 1409–1414 (2006)

    Article  ADS  Google Scholar 

  66. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization, J. Cryst. Growth 214/215, 72–76 (2000)

    Article  ADS  Google Scholar 

  67. L.N. Demianets, D.V. Kostomarov, I.P. Kuzʼmina, S.V. Pushko: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions, Cryst. Rep. 47, S86–S98 (2002), Supp 1

    Article  Google Scholar 

  68. B.G. Wang: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 32, 659–667 (1997)

    Article  ADS  Google Scholar 

  69. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203, 186–196 (1999)

    Article  ADS  Google Scholar 

  70. I.L. Khodakovskiy, A.Y. Yelkin: Measurement of the solubility of zincite in aqueous NaOH at 100, 150, and 200 °C, Geokhimiya 10, 1490–1498 (1975)

    Google Scholar 

  71. P. Bénézeth, D. Palmer, D. Wesolowski: The solubility of zinc oxide in 0.03 m NaTr as a function of temperature with in-situ pH measurement, Geochim. Cosmochi. Acta 63, 1571–1586 (1999)

    Article  ADS  Google Scholar 

  72. B.G. Wang, E.W. Shi, W.Z. Zhong: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 33, 937–941 (1998)

    Article  Google Scholar 

  73. M.M. Lukina, M.V. Lelekova, V.E. Khadzhi: Effect of lithium on the growth rate of zincite and quartz under hydrothermal conditions, Sov. Phys. Crystallogr. 15, 530–531 (1970)

    Google Scholar 

  74. R.A. Laudise, R.L. Barnes: Perfection of quartz and its connection to crystal growth, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control. 35, 277–287 (1998)

    Article  Google Scholar 

  75. A.F. Armington: Recent advances in the growth of high quality quartz, Prog. Cryst. Growth Charact. 21, 97–111 (1990)

    Article  Google Scholar 

  76. E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)

    Article  Google Scholar 

  77. E.D. Kolb, S. Coriell, R.A. Laudise, A.R. Hutson: The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures, Mater. Res. Bull 2, 1099–1106 (1967)

    Article  Google Scholar 

  78. I.P. Kuzʼmina: Crystallization kinetics of zincite under hydrothermal conditions, Sov. Phys. Crystallogr. 13(5), 803–805 (1969), translated from Kristallogr., Vol. 13, No.5

    Google Scholar 

  79. G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan, M. Harris: Growth and process induced dislocation in zinc oxide crystals, J. Cryst. Growth 297, 74–79 (2006)

    Article  ADS  Google Scholar 

  80. H. Youping, Z. Jinbo, W. Dexang, S. Genbo, Y. Mingshan: New technology of KDP crystal growth, J. Cryst. Growth 169, 196–198 (1996)

    Article  Google Scholar 

  81. B. Wang, M.J. Callahan, C. Xu, L.O. Bouthillette, N.C. Giles, D.F. Bliss: Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals, J. Cryst. Growth 304, 73–79 (2007)

    Article  ADS  Google Scholar 

  82. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell: Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 81, 622–624 (2002)

    Article  ADS  Google Scholar 

  83. E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)

    Article  Google Scholar 

  84. C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett. 85(5), 1012–1015 (2000)

    Article  ADS  Google Scholar 

  85. R. Littbarski: Carrier concentration and mobility. In: Current Topics in Materials Science, Vol. 7, ed. by E. Kaldis (North-Holland, Amsterdam 1981) pp. 212–225

    Google Scholar 

  86. B. Theys, V. Sallet, F. Jomard, A. Lusson, J. Rommeluère, Z. Teukam: Effects of intentionally introduced hydrogen on the electric properties of ZnO layers grown by metalorganic chemical vapor deposition, J. Appl. Phys. 91, 3922–3924 (2002)

    Article  ADS  Google Scholar 

  87. D.C. Look, J.W. Hemsky, J.R. Sizelove: Residual native shallow donor in ZnO, Phys. Rev. Lett. 82, 2552–2555 (1999)

    Article  ADS  Google Scholar 

  88. A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi: Scanning tunneling spectroscopy characterization of ZnO single crystals, Semicond. Sci. Technol. 16, 589–593 (2001)

    Article  ADS  Google Scholar 

  89. N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido: Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth 229, 98–103 (2001)

    Article  ADS  Google Scholar 

  90. M. Yoneta, K. Yoshino, M. Ohishi, H. Saito: Photoluminescense studies of high-quality ZnO single crystals by hydrothermal method, Phys. B 376–377, 745–748 (2006)

    Article  Google Scholar 

  91. J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals, Superlattice Microstruct. 38, 223–230 (2005)

    Article  ADS  Google Scholar 

  92. L.N. Demʼyanets, V.I. Lyutin: Status of hydrothermal growth of bulk ZnO: latest issues and advantages, J. Cryst. Growth 310, 993–999 (2008)

    Article  ADS  Google Scholar 

  93. J. Mass, M. Avella, J. Jiménez, A. Rodriquez, T. Rodriquez, M. Callahan, D. Bliss, B. Wang: Cathodoluminescence study of ZnO wafer cut from hydrothermal crystals, J. Cryst. Growth 310, 1000–1005 (2008)

    Article  ADS  Google Scholar 

  94. D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç: Simililarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN, Solid State Commun. 101, 643–646 (1997)

    Article  ADS  Google Scholar 

  95. A. Urbieta, P. Fernández, J. Piqueras, C. Hardalov, T. Sekiguchi: Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals, J. Phys. D Appl. Phys. 34, 2945–2949 (2001)

    Article  ADS  Google Scholar 

  96. A. Urbieta, P. Fernández, C. Hardalov, J. Piqueras, T. Sekiguchi: Cathodoluminescense and scanning tunneling spectroscopy, Mater. Sci. Eng. B91–92, 345–348 (2002)

    Article  Google Scholar 

  97. J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Visable luminescence in ZnO. In: New Materials and Procecesses for Incoming Semiconductor Technologies, ed. by S. Dueñas, H. Castán (Transworld Research Network, Kerala 2006)

    Google Scholar 

  98. D. Bliss: Zinc oxide. In: Encyclopedia of Advanced Materials, ed. by D. Bloor, M.C. Flemings, R.J. Brook, S. Mahajan, R.W. Cahn (Pergamon, Oxford 1994) pp. 9888–9891

    Google Scholar 

  99. C. Woods, A.J. Drehman: Presentation, Natl. Space Missile Mater. Symp. (Monterey, 2001)

    Google Scholar 

  100. B. Wang, M. Callahan, J. Bailey: Synthesis of dense polycrystalline GaN of high purity by the chemical vapor reaction process, J. Cryst. Growth 286, 50–54 (2005)

    Article  ADS  Google Scholar 

  101. K. Lee, K. Auh: Dislocation density of GaN grown by hydride vapor phase epitaxy, MRS Int. J. Nitride Semicond. Res. 6, 9 (2001)

    Google Scholar 

  102. B. Raghothamacher, J. Bai, M. Dudley, R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser, Z. Sitar, B. Wang, M. Callahan, K. Rakes, P. Konkapaka, M. Spencer: Characterization of bulk-grown GaN and AlN single-crystals materials, J. Cryst. Growth 287, 349–353 (2006)

    Article  ADS  Google Scholar 

  103. M.J. Callahan, B. Wang, L. Bouthillette, S.-Q. Wang, J.W. Kolis, D. Bliss: Growth of GaN crystals under ammonothermal conditions, MRS Fall Meet. Symp. Proc. 798, Y2.10 (2004)

    Google Scholar 

  104. T. Hashimoto, M. Saito, K. Fujito, F. Wu, J.S. Speck, S. Nakamura: Seeded growth of GaN by the basic ammonothermal method, J. Cryst. Growth 305, 311–316 (2007)

    Article  ADS  Google Scholar 

  105. Images provided by Prof. Brian Skrommeʼs group, Arizona St. Univ.

    Google Scholar 

  106. T. Hashimoto, K. Fujito, F. Wu, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura: Structural characterization of thick GaN films grown on free-standing GaN seeds by the ammonothermal method using basic ammonia, Jpn. J. Appl. Phys. 44(25), L797–L799 (2005)

    Article  ADS  Google Scholar 

  107. R. Dwilinski, R. Doradzinski, J. Garzynski, L.P. Sierzputowski, A. Puchalski, Y. Kanaba, K. Yagi, H. Minakuchi, H. Hayashi: Excellent crystallinity of truly bulk ammonothermal GaN, J. Cryst. Growth 310, 3911–3916 (2008)

    Article  ADS  Google Scholar 

  108. J. Bai, M. Dudley, B. Raghothamachar, P. Gouma, B.J. Skrome, L. Chen, P.J. Hartlieb, E. Michaels, J. Kolis: Correlated structural and optical characterization of ammonothermally grown bulk GaN, Appl. Phys. Lett. 84(17), 3289–3291 (2004)

    Article  ADS  Google Scholar 

  109. M.P. DʼEvelyn, H.C. Hong, D.-S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R.J. Molnar: Bulk GaN crystal growth by th high-pressure ammonothermal method, J. Cryst. Growth 300, 11–16 (2007)

    Article  ADS  Google Scholar 

  110. S.V. Bhat, K. Biswas, C.N.R. Rao: Synthesis and optical properties of In-doped GaN nanocrystals, Solid State Commun. 141, 325–328 (2007)

    Article  ADS  Google Scholar 

  111. B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar: Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates, J. Electron. Mater. 35, 1104–1111 (2006)

    Article  ADS  Google Scholar 

  112. M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski: Ammomonothermal sythesis of GaN doped with transition metal ions (Mn, Fe, Cr), J. Alloys Compd. 456, 324–338 (2008)

    Article  Google Scholar 

  113. A. Denis, G. Goglio, G. Demazeau: Gallium nitride bulk crystal growth processes: a review, Mater. Sci. Eng. R 50, 167–194 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Callahan or Qi-Sheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Callahan, M.J., Chen, QS. (2010). Hydrothermal and Ammonothermal Growth of ZnO and GaN. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_19

Download citation

Publish with us

Policies and ethics