Skip to main content

Crystal Growth Techniques and Characterization: An Overview

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

A brief overview of crystal growth techniques and crystal analysis and characterization methods is presented here. This is a prelude to the details in subsequent chapters on fundamentals of growth phenomena, details of growth processes, types of defects, mechanisms of defect formation and distribution, and modeling and characterization tools that are being employed to study as-grown crystals and bring about process improvements for better-quality and large-size crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

APS:

Advanced Photon Source

BCF:

Burton–Cabrera–Frank

DKDP:

deuterated potassium dihydrogen phosphate

EPR:

electron paramagnetic resonance

FWHM:

full width at half-maximum

IR:

infrared

KDP:

potassium dihydrogen phosphate

LED:

light-emitting diode

LPE:

liquid-phase epitaxy

MBE:

molecular-beam epitaxy

MOVPE:

metalorganic vapor-phase epitaxy

PL:

photoluminescence

SC:

slow cooling

SCBG:

slow-cooling bottom growth

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

TED:

threading edge dislocation

TEM:

transmission electron microscopy

TSD:

threading screw dislocation

TSSG:

top-seeded solution growth

TSZ:

traveling solvent zone

VPE:

vapor-phase epitaxy

VTGT:

vertical temperature gradient technique

XRT:

x-ray topography

References

  1. J. Kepler: Strena seu de nive sexangula (Tampach, Frankfurt 1611)

    Google Scholar 

  2. N. Steno: De solido intra solidum naturaliter contento dissertationis prodromus (Stella, Florence 1669), English translation by J.G. Winter (Hafner, New York 1968

    Google Scholar 

  3. H.J. Scheel: Historical introduction. In: Handbook of Crystal Growth, Vol. 1a, ed. by D.T.J. Hurle (Elsevier, Amsterdam 1993) pp. 1–41, Chap. 1

    Google Scholar 

  4. D. Elwell, H.J. Scheel: Crystal Growth from High Temperature Solution (Academic, London 1975)

    Google Scholar 

  5. J.W. Gibbs: On the Equilibrium of Heterogeneous Substances, Collected Works (Longmans Green, New York 1928)

    MATH  Google Scholar 

  6. W. Kossel: Zur Theorie des Kristallwachstums, Nachr. Ges. Wiss. Göttingen 135, 135–143 (1927)

    Google Scholar 

  7. P. Curie: Sur la formation des criteaux et sur les constantes capillaires de leurs differentes faces, Bull. Soc. Franc. Mineral. 8, 145–150 (1885)

    Google Scholar 

  8. G. Wulff: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung von Krystallflächen, Z. Kristallogr. 34, 449 (1901)

    Google Scholar 

  9. R. Marc, A. Ritzel: Über die Faktoren, die den Kristallhabitus bedingen, Z. Phys. Chem. 76, 584 (1911)

    Google Scholar 

  10. A. Bravais, A. Etudes: Crystallographiques (Gauthier Villers, Paris 1866)

    Google Scholar 

  11. W. Nernst: Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen, Z. Phys. Chem. 47(1), 52–55 (1904)

    Google Scholar 

  12. A.A. Noyes, W.R. Whitney: Über die Auflösungsgeschwindigkeit von festen Stoffen in ihren eigenen Lösungen, Z. Phys. Chem. 23, 689–692 (1897)

    Google Scholar 

  13. I.N. Stranski: Zur Theorie des Kristallwachstums, Z. Phys. Chem. 136, 259–278 (1928)

    Google Scholar 

  14. M. Volmer, A. Weber: Keimbildung in übersättigten Gebilden, Z. Phys. Chem. 119, 277–301 (1926)

    Google Scholar 

  15. E.A. Brandes: Smithells Reference Book (Butterworths, London 1983)

    Google Scholar 

  16. F.C. Frank: The influence of dislocations on crystal growth, Discuss. Faraday Soc. 5, 48–54 (1949)

    Article  Google Scholar 

  17. W.K. Burton, N. Cabrera, F.C. Frank: The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London A 243, 299–358 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. K. Byrappa, D.Y. Pushcharovsky: Crystal chemistry and its significance on the growth of technological materials, Prog. Cryst. Growth Charact. Mater. 24, 269–350 (1992)

    Article  Google Scholar 

  19. M.M. Lencka, R.E. Riman: Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates, Chem. Mater. 7(1), 18–25 (1995)

    Article  Google Scholar 

  20. K. Byrappa, M. Yoshimura: Handbook of Hydrothermal Technology (William Andrew Noyes, Norwich 2001)

    Google Scholar 

  21. W. Tolksdorf: Flux growth. In: Handbook of Crystal Growth-Bulk Crystal Growth, Vol. 2, ed. by D.T.J. Hurle (North-Holland, Amsterdam 1994) p. 563, Chap. 10

    Google Scholar 

  22. R.A. Laudise: The Growth of Single Crystals (Prentice Hall, Englewood Cliffs 1970)

    Google Scholar 

  23. B.M.R. Wanklyn: Practical aspects of flux growth by spontaneous nucleation. In: Crystal Growth, Vol. 1, ed. by B.R. Pamplin (Pergamon, Oxford 1974) pp. 217–288

    Google Scholar 

  24. V.V. Timofeeva: Growth of Crystals from High Temperature Solutions (Nauka, Moscow 1975)

    Google Scholar 

  25. A. Verneuil: Production artificielle du rubis par fusion, C. R. Paris 135, 791–794 (1902)

    Google Scholar 

  26. D.T.J. Hurle, B. Cockyane: Czochralski growth. In: Handbook of Crystal Growth, Vol. 2a, ed. by D.T.J. Hurle (North Holland, Amsterdam 1994) pp. 99–212, Chap. 3

    Google Scholar 

  27. D.T.J. Hurle (Ed.): Handbook of Crystal Growth (North Holland, Amsterdam 1994)

    Google Scholar 

  28. G. Stringfellow: Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic, New York 1998)

    Google Scholar 

  29. R. Fornari: Vapor phase epitaxial growth and properties of III-Nitride materials. In: Crystal Growth of Technologically Important Electronic Materials, ed. by K. Byrappa, T. Ohachi, H. Klapper, R. Fornari (Allied Publishers, New Delhi 2003)

    Google Scholar 

  30. A.R. Verma: Crystal Growth and Dislocations (Butterworths, London 1953)

    MATH  Google Scholar 

  31. S. Amelinckx: The direct observation of dislocations. In: Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic, New York 1964), Suppl. 6

    Google Scholar 

  32. E.A. Wood: Crystals and Light (Dover, New York 1977)

    Google Scholar 

  33. B.K. Tanne: High resolution x-ray diffraction and topography for crystal characterization, J. Cryst. Growth 99, 1315 (1990)

    Article  ADS  Google Scholar 

  34. B.K. Tanner: X-ray Diffraction Topography (Pergamon, Oxford 1976)

    Google Scholar 

  35. V.W. Berg: Über eine röntgenographische Methode zur Untersuchung von Gitterstörung an Kristallen, Naturwissenschaften 19, 391–396 (1931)

    Article  ADS  Google Scholar 

  36. A.R. Lang: Direct observation of individual dislocations, J. Appl. Phys. 29, 597–598 (1958)

    Article  ADS  Google Scholar 

  37. C.S. Barrett: A new microscopy and its potentialities, Trans. AIME 161, 15–65 (1945)

    Google Scholar 

  38. W.L. Bond, J. Andrus: Structural imperfections in quartz crystals, Am. Mineral. 37, 622–632 (1952)

    Google Scholar 

  39. G.H. Schwuttke: New x-ray diffraction microscopy technique for study of imperfections in semiconductor crystals, J. Appl. Phys. 36, 2712–2714 (1965)

    Article  ADS  Google Scholar 

  40. A.R. Lang: Point-by-point x-ray diffraction studies of imperfections in melt-grown crystals, Acta Cryst. 10, 839 (1957)

    Article  Google Scholar 

  41. J. Miltat: White beam synchrotron radiation. In: Characterization of Crystal Growth Defects by X-ray Methods, NATO ASI Ser. B, Vol. 63, ed. by B.K. Tanner, D.K. Bowen (Plenum, New York 1980) pp. 401–420

    Chapter  Google Scholar 

  42. B. Ragothamachar, G. Dhanaraj, M. Dudley: Direct analysis in crystals using x-ray topography, Microsc. Res. Tech. 69, 343 (2006)

    Article  Google Scholar 

  43. A.J. Forty: Direct observations of dislocations in crystals, Adv. Phys. 3, 1–25 (1954)

    Article  ADS  Google Scholar 

  44. W.G. Johnson: Dislocations etchpits in nonmetallic crystals. In: Progress in Ceramics, Vol. 2, ed. by J.E. Burke (Pergamon, Oxford 1962) p. 1

    Google Scholar 

  45. K. Sangawal: Etching of Crystals (North-Holland, Amsterdam 1987)

    Google Scholar 

  46. J.J. Gilman, W.G. Johnston: Behaviour of individual dislocations in strain-hardened LiF crystals, J. Appl. Phys. 31, 687–692 (1960)

    Article  ADS  Google Scholar 

  47. W.J. Choyke, H. Matsunami, G. Pensl (Eds.): Silicon Carbide: Recent Major Advances (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  48. A. Hossain, A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang, K-H. Kim, R. Gul, L. Xu, R.B. James: Extended defects in CdZnTe crystals: Effects on device performance, J. Cryst. Growth (2010) in press (doi:10.1016/j.jcrysgro.2010.03.005)

    Google Scholar 

  49. U.N. Roy, S. Weler, J. Stein, A. Gueorguiev: Unseeded growth of CdZnTe:In by THM technique, Proc. SPIE 7449, 74490U (2009)

    Article  ADS  Google Scholar 

  50. J. Jimenez (Ed.): Microprobe Characterization of Optoelectronic Materials (Taylor Francis, New York 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindhan Dhanaraj , Kullaiah Byrappa , Vishwanath (Vish) Prasad or Michael Dudley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dhanaraj, G., Byrappa, K., Prasad, V.(., Dudley, M. (2010). Crystal Growth Techniques and Characterization: An Overview. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_1

Download citation

Publish with us

Policies and ethics