Skip to main content

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

This chapter discusses the main elements and concepts of MCDA. A number of approaches for defining decision problems have been suggested in the MCDA literature. At the most rudimentary level, a multi-criteria decision problem involves a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria according to the decision maker’s preferences. The main elements of any multicriteria decision problem includes: decision maker(s), alternatives, and criteria. The procedures for tackling multicriteria decision problems involve three main concepts: value scaling (or standardization), criterion weighting, and combination (decision) rule. These are fundamental concepts for MCDA in general and GIS-MCDA in particular. They can be considered as the building blocks of spatial decision support procedures.  A number of approaches for defining decision problems have been suggested in the MCDA literature (e.g., Keeney 1992; Chankong and Haimes 1983). At the most rudimentary level, a multicriteria decision problem involves a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria according to the decision maker’s preferences. There are three key terms in this definition that are the main elements of any multicriteria decision problem: decision maker(s), alternatives, and criteria (Zarghami and Szidarovszky 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoine, J., Fischer, G., & Makowski, M. (1997). Multiple criteria land use analysis. Applied Mathematics and Computation, 83(2–3), 195–215.

    Google Scholar 

  • Armstrong, M. P., Densham, P. J., Lolonis, P., & Rushton, G. (1992). Cartographic displays to support locational decision making. Cartography and Geographic Information Systems, 19(2), 154–164.

    Google Scholar 

  • Banai, R. (1993). Fuzziness in geographic information systems: Contributions from the analytic hierarchy process. International Journal of Geographical Information Systems, 7(4), 315–329.

    Google Scholar 

  • Banai, R. (1998). Transit-oriented development suitability analysis by the analytic hierarchy process and a geographic information system: A prototype procedure. Journal of Public Transportation, 2(1), 65–143.

    Google Scholar 

  • Banai, R. (2005). Anthropocentric problem solving in planning and design, with analytic hierarchy process. Journal of Architectural and Planning Research, 22(2), 107–120.

    Google Scholar 

  • Barredo, J. I., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 2–9.

    Google Scholar 

  • Baud, I., Sridharan, N., & Pfeffer, K. (2008). Mapping urban poverty for local governance in an Indian mega-city: The case of Delhi. Urban Studies, 45(7), 1385–1412.

    Google Scholar 

  • Beinat, E. (1997). Value functions for environmental management. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Bennett, D. A., Wade, G. A., & Armstrong, M. P. (1999). Exploring the solution space of semi-structured geographical problems using genetic algorithms. Transactions in GIS, 3(1), 51–71.

    Google Scholar 

  • Berger, P. A. (2006). Generating agricultural landscapes for alternative futures analysis: A multiple attribute decision-making model, Transactions in GIS, 10(1):103–120.

    Google Scholar 

  • Biermann, S. M. (1997). The strategic identification of suitable land for low income residential development. South African Geographical Journal, 79(3), 188–194.

    Google Scholar 

  • Bodily, S. E. (1985). Modern decision making: A guide to modeling with decision support systems. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Boerboom, L. G. J., Sharifi, M. A., Shamsudin, K., & Kabir, A. (2006). Spatial multi-criteria evaluation to strengthen governance: Developments in Malaysian planning. In K. Shamsudin (Ed.), Implementing multi-criteria decision making MCDM in Malaysian town planning (pp. 103–118). Kuala Lumpur: Federal Department of Town and Country Planning.

    Google Scholar 

  • Bojórquez-Tapia, L. A., Diaz-Mondragon, S., & Ezcurra, E. (2001). GIS-based approach for participatory decision making and land suitability assessment. International Journal of Geographical Information Science, 15(2), 129–151.

    Google Scholar 

  • Bojórquez-Tapia, L. A., Juarez, L., & Cruz-Bello, G. (2002). Integrating fuzzy logic, optimization, and GIS for ecological impact assessments. Environmental Management, 30(3), 418–433.

    Google Scholar 

  • Bone, C., Dragićević, S., & White, R. (2011). Modeling-in-the-middle: Bridging the gap between agent-based modeling and multi-objective decision making for land use change. International Journal of Geographical Information Science, 25(5), 717–737.

    Google Scholar 

  • Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers and Geosciences, 34(4), 399–410.

    Google Scholar 

  • Brown, C. A., Stinson, D. P., & Grant, R. W. (1986). Multi-attribute tradeoff system: Personal computer version user’s manual. Denver: U.S. Bureau of Reclamation.

    Google Scholar 

  • Brookes, C. J. (1997). A parameterized region-growing programme for site allocation on raster suitability maps. International Journal of Geographical Information Systems, 11(4), 375–396.

    Google Scholar 

  • Carsjens, G. J., & Ligtenberg, A. (2007). A GIS-based support tool for sustainable spatial planning in metropolitan areas. Landscape and Urban Planning, 80(1–2), 72–83.

    Google Scholar 

  • Carter, B., & Rinner, C. (2014). Locally weighted linear combination in a vector geographic information system. Journal of Geographical Systems, 16(3), 343–361.

    Google Scholar 

  • Carver, S. J. (1991). Integrating multi-criteria evaluation with geographical information systems. International Journal of Geographical Information Systems, 5(3), 321–339.

    Google Scholar 

  • Ceballos-Silva, A., & López-Blanco, J. (2003). Evaluating biophysical variables to identify suitable areas for oat in Central Mexico: A multi-criteria and GIS approach. Agriculture, Ecosystems and Environment, 95(1), 371–377.

    Google Scholar 

  • Chakhar, S., & Mousseau, V. (2008). GIS-based multicriteria spatial modeling generic framework. International Journal of Geographical Information Science, 22(11–12), 1159–1196.

    Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: North-Holland.

    Google Scholar 

  • Chen, Y., Khan, S., & Paydar, Z. (2010). To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrigation and Drainage, 59(2), 174–188.

    Google Scholar 

  • Chrisman, N. R. (1996). Exploring geographic information systems. New York: Wiley.

    Google Scholar 

  • Church, R. L., Gerrard, R. A., Gilpin, M., & Stine, P. (2003). Constructing cell-based habitat patches useful in conservation planning. Annals of the Association of American Geographers, 93(4), 814–827.

    Google Scholar 

  • Cohon, J. L. (1978). Multiobjective programming and planning. London: Academic Press.

    Google Scholar 

  • Choo, E. U., Schoner, B., & Wedley, W. C. (1999). Interpretation of criteria weights in multicriteria decision making. Computers and Industrial Engineering, 37(3), 527–541.

    Google Scholar 

  • Cova, T. J., & Church, R. L. (2000). Exploratory spatial optimization and site search: Neighborhood operator approach. Computers, Environment and Urban Systems, 24(5), 401–419.

    Google Scholar 

  • Eastman, J.R. (1997). IDRISI for Windows, Version 2.0: Tutorial exercises. Worcester: Clark University.

    Google Scholar 

  • Eastman, J. R., Kyem, P. A. K., Toledano, J., & Jin, W. (1993). GIS and decision making. Geneva: UNITAR.

    Google Scholar 

  • Eastman, J. R., Jin, W. G., Kyem, P., & Toledano, J. (1995). Raster procedures for multicriteria multiobjective decisions. Photogrammetric Engineering and Remote Sensing, 61(5), 539–547.

    Google Scholar 

  • Feick, R. D., & Hall, G. B. (2002). Balancing consensus and conflict with a GIS-based multi-participant, multi-criteria decision support tool. GeoJournal, 53(4), 391–406.

    Google Scholar 

  • Feick, R. D., & Hall, B. G. (2004). A method for examining the spatial dimension of multi-criteria weight sensitivity. International Journal of Geographical Information Science, 18(8), 815–840.

    Google Scholar 

  • Fischer, G. W. (1995). Range sensitivity of attribute weights in multiattribute value models. Organizational Behavior and Human Decision Processes, 62(3), 252–266.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2000). Quantitative geography: Perspectives on spatial data analysis. London: Sage.

    Google Scholar 

  • Giupponi, C., Mysiak, J., Fassio, A., & Cogan, V. (2004). MULINO-DSS: A computer tool for sustainable use of water resources at the catchment scale. Mathematics and Computers in Simulation, 64(1), 13–24.

    Google Scholar 

  • Goicoechea, A., Hansen, D. R., & Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. New York: Wiley.

    Google Scholar 

  • Goodwin, P., & Wright, G. (1998). Decision analysis for management judgment. Chichester: Wiley.

    Google Scholar 

  • Greene, R., Devillers, R., Luther, J. E., & Eddy, B. G. (2011). GIS-based multiple-criteria decision analysis. Geography Compass, 5(6), 412–432.

    Google Scholar 

  • Hessburg, P. F., Reynolds, K. M., Salter, R. B., Dickinson, J. D., Gaines, W. L., & Harrod, R. J. (2013). Landscape evaluation for restoration planning on the Okanogan-Wenatchee National Forest USA. Sustainability, 5(3), 805–840.

    Google Scholar 

  • Heywood, I., Cornelius, A., & Carver, S. (2006). An introduction to geographical information systems. Harlow: Prentice Hall.

    Google Scholar 

  • Hobbs, B. F., & Meier, P. (2000). Energy decisions and the environment: A guide to the use of multicriteria methods. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Huang, B., Fery, P., Xue, L., & Wang, Y. (2008). Seeking the Pareto front for multiobjective spatial optimization problems. International Journal of Geographical Information Science, 22(5), 507–526.

    Google Scholar 

  • Hwang, C. L., & Lin, M. J. (1987). Group decision making under multiple criteria. Berlin: Springer.

    Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Berlin: Springer.

    Google Scholar 

  • Jankowski, P., & Ewart, G. (1996). Spatial decision support system for health practitioners: Selecting a location of rural health practice. Geographical Systems, 3(2), 279–299.

    Google Scholar 

  • Jankowski, P., Ligmann-Zielinska, A., & Swobodzinski, M. (2008). Choice modeler: A web-based spatial multiple criteria evaluation tool. Transactions in GIS, 12(4), 541–561.

    Google Scholar 

  • Janssen, R., & van Herwijnen, M. (1998). Map transformation and aggregation methods for spatial decision support. In E. Beinat & P. Nijkamp (Eds.), Multicriteria analysis for land-use management (pp. 253–270). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Jessop, A. (1999). Entropy in multiattribute problems. Journal of Multi-Criteria Decision Analysis, 8(2), 61–70.

    Google Scholar 

  • Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Systems, 14(2), 173–184.

    Google Scholar 

  • Johnson, M. P. (2005). Spatial decision support for assisted housing mobility counseling. Decision Support Systems, 41(1), 296–312.

    Google Scholar 

  • Jumppanen, J., Kurttila, M., Pukkala, T., & Uuttera, J. (2003). Spatial harvest scheduling approach for areas involving multiple ownership. Forest Policy and Economics, 5(1), 27–38.

    Google Scholar 

  • Jun, C. (2000). Design of an intelligent geographic information system for multi-criteria site analysis. URISA Journal, 12(3), 5–17.

    Google Scholar 

  • Kao, J. J., & Lin, H. Y. (1996). Multifactor spatial analysis for landfill siting. Journal of Environmental Engineering, 122(10), 902–908.

    Google Scholar 

  • Keeney, R. L. (1992). Value-focused thinking: A path to creative decision making. Cambridge: Harvard University Press.

    Google Scholar 

  • Lai, S. K., & Hopkins, L. D. (1989). The meanings of trade-offs in multiattribute evaluation methods: A comparison. Environment and Planning B, 16(2), 155–170.

    Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2012). Groundwater quality assessment with two multi-criteria decision making methods. International Journal of Geomatics and Geosciences, 2(3), 863–877.

    Google Scholar 

  • Li, X., & Liu, X. (2007). Defining agents’ behaviors to simulate complex residential development using multicriteria evaluation. Journal of Environmental Management, 85(4), 1063–1075.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2005). Integration of genetic algorithms and GIS for optimal location search. International Journal of Geographical Information Science, 19(5), 581–601.

    Google Scholar 

  • Ligmann-Zielinska, A. (2009). The impact of risk-taking attitudes on a land use pattern: an agent based model of residential development. Journal of Land Use Science, 4(4), 215–232.

    Google Scholar 

  • Ligmann-Zielinska, A., & Jankowski, P. (2012). Impact of proximity-adjusted preferences on rank-order stability in geographical multicriteria decision analysis. Journal of Geographical Systems, 14(2), 167–187.

    Google Scholar 

  • Lloyd, C. D. (2010). Local models for spatial analysis. Boca Raton: CRC Press.

    Google Scholar 

  • MacDonald, M. L. (1996). A multi-attribute spatial decision support system for solid waste planning. Computers, Environment and Urban Systems, 20(1), 1–17.

    Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  • Malczewski, J. (2000). On the use of weighted liner combination method in GIS: Common and best practice approaches. Transactions in GIS, 4(1), 5–22.

    Google Scholar 

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Google Scholar 

  • Malczewski, J. (2011). Local weighted linear combination. Transactions in GIS, 15(4), 439–455.

    Google Scholar 

  • Malczewski, J., & Liu, X. (2014). Local ordered weighted averaging in GIS-based multicriteria analysis. Annals of GIS, 20(2), 117–129.

    Google Scholar 

  • Malczewski, J., Pazner, M., & Zaliwska, M. (1997). GIS-based techniques for visualizing multicriteria location analysis: A case study. Cartography and Geographic Information Systems, 24(2), 80–90.

    Google Scholar 

  • Manson, S. M. (2005). Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico. Agriculture, Ecosystems and Environment, 111(1), 47–62.

    Google Scholar 

  • Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in Planning, 30(1), 1–84.

    Google Scholar 

  • Massam, B. H. (1993). The right place: Shared responsibility and the location of public facilities. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • McCoy, J., & Johnston, K. (2001). Using ArcGIS TM Spatial Analyst. Redlands: ESRI.

    Google Scholar 

  • Mendoza, G. A., & Martin, H. (2006). Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. Forest Ecology and Management, 230(1–3), 1–22.

    Google Scholar 

  • Nijkamp, P., & van Delft, A. (1977). Multicriteria analysis and regional decision-making. Leiden: Martinus Nijhoff.

    Google Scholar 

  • O’Sullivan, D., & Unwin, D. J. (2010). Geographic information analysis. Hoboken: Wiley.

    Google Scholar 

  • Ozturk, D., & Batuk, F. (2011). Implementation of GIS-based multicriteria decision analysis with VB in ArcGIS. International Journal of Information Technology and Decision Making, 10(6), 1023–1042.

    Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.

    Google Scholar 

  • Pereira, J. M. C., & Duckstein, L. (1993). A multiple criteria decision-making approach to GIS-based land suitability evaluation. International Journal of Geographical Information Systems, 7(5), 24–407.

    Google Scholar 

  • Proulx, F., Rodriguez, M. J., Sérodes, J., & Bouchard, C. (2007). A methodology for identifying vulnerable locations to taste and odour problems in a drinking water system. Water Science and Technology, 55(5), 177–183.

    Google Scholar 

  • Rinner, C., & Heppleston, A. (2006). The spatial dimensions of multi-criteria evaluation-case study of a home buyer’s spatial decision support system. In M. Raubal, H. J. Miller, A. U. Frank, M.F. Goodchild (Eds.), Proceedings of 4th International Conference, GIScience 2006, Münster, Germany. Lecture Notes in Computer Science (Vol. 4197, pp. 338–352), September 20–23, 2006. Berlin: Springer.

    Google Scholar 

  • Rinner, C., & Taranu, J. P. (2006). Map-based exploratory evaluation of non-medical determinants of population health. Transactions in GIS, 10(4), 633–649.

    Google Scholar 

  • Robinson, T. P., Harris, R. S., Hopkins, J. S., & Williams, B. G. (2002). An example of decision support for trypanosomiasis control using a geographical information system in eastern Zambia. International Journal of Geographical Information Science, 16(4), 345–360.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Santé-Riveira, I., Crecente-Maseda, R., & Miranda-Barrós, D. (2008). GIS-based planning support system for rural land-use allocation. Computers and Electronics in Agriculture, 63(2), 257–273.

    Google Scholar 

  • Sengupta, R. R., & Bennett, D. A. (2003). Agent-based modelling environment for spatial decision support. International Journal of Geographical Information Science, 17(2), 157–180.

    Google Scholar 

  • Sengupta, R., & Sieber, R. (2007). Geospatial agents, agents everywhere. Transactions in GIS, 11(4), 483–506.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1947). The mathematical theory of communication. Urbana: The University of Illinois Press.

    Google Scholar 

  • Sharifi, M. A., Boerboom, L., & Shamsudin, K. (2004). Application of multiple criteria decision analysis in the Klang Valley integrated land use and transportation study. Malaysian Journal of Town Planning, 2(1), 40–55.

    Google Scholar 

  • Sharifi, A., & van Herwijnen, M. (2002). Spatial Decision Support Systems (p. 174). Netherlands: International Institute for Geoinformation Science and Earth Observation (ITC), Enschede.

    Google Scholar 

  • Siddiqui, M. Z., Everett, J. W., & Vieux, B. E. (1996). Landfill siting using Geographic information systems: A demonstration. Journal of Environmental Engineering, 122(6), 515–523.

    Google Scholar 

  • Starr, M. K., & Zeleny, M. (1977). MCDM—state and future of the arts. In M. K. Starr & M. Zeleny (Eds.), Multiple criteria decision making (pp. 5–29). Amsterdam: Nort-Holland.

    Google Scholar 

  • Stillwell, W. G., Seaver, D. A., & Edwards, W. (1981). A comparison of weight approximation techniques in multiattribute utility decision making. Organizational Behavior and Human Performance, 28(1), 62–77.

    Google Scholar 

  • Stoms, D. M., McDonald, J. M., & Davis, F. W. (2002). Fuzzy assessment of land suitability for scientific research reserves. Environmental Management, 29(4), 545–558.

    Google Scholar 

  • Strager, M. P., & Rosenberger, R. S. (2006). Incorporating stakeholder preferences for land conservation: Weights and measures in spatial MCA. Ecological Economics, 58(1), 79–92.

    Google Scholar 

  • Thill, J. C. (Ed.). (1999). Multicriteria decision-making and analysis: A geographic information sciences approach. New York: Ashgate.

    Google Scholar 

  • Tkach, R., & Simonovic, S. (1997). A new approach to multicriteria decision making in water resources. Journal of Geographical Information and Decision Analysis, 1(1), 25–43.

    Google Scholar 

  • von Herwijnen, M. (1999). Spatial decision support for environmental management. Amsterdam: Free University Amsterdam.

    Google Scholar 

  • van Herwijnen, M., & Rietveld, P. (1999). Spatial dimensions in multicriteria analysis. In J. C. Thill (Ed.), Spatial multicriteria decision making and analysis: A geographic information sciences approach (pp. 77–99). London: Ashgate.

    Google Scholar 

  • Vertinsky, I., Brown, S., Schreier, H., Thompson, W. A., & van Kooten, G. C. (1994). A hierarchical-GIS-based decision model for forest management: The systems approach. Interfaces, 24(4), 38–53.

    Google Scholar 

  • Voogd, H. (1983). Multicriteria evaluation for urban and regional planning. London: Pion Limited.

    Google Scholar 

  • Woolridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2), 115–152.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy Sets. Information and Content, 8(3), 338–353.

    Google Scholar 

  • Zarghami, M., & Szidarovszky, F. (2011). Multicriteria analysis applications to water and environment management. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Zheng, N., Takara, K., Yamashiki, Y., & Tachikawa, Y. (2009). Assessing vulnerability to regional flood hazard through spatial multi-criteria analysis in the Huaihe river basin, China. Journal of Hydraulic Engineering, 53, 127–132.

    Google Scholar 

  • Zhu, X., & Dale, A. P. (2001). Java AHP: A web-based decision analysis tool for natural resource and environmental management. Environmental Modelling and Software, 16(3), 251–262.

    Google Scholar 

  • Zucca, A., Sharifi, A. M., & Fabbri, A. G. (2008). Application of spatial multi-criteria analysis to site selection for a local park: A case study in the Bergamo Province, Italy. Journal of Environmental Management, 88(4), 752–769.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Malczewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malczewski, J., Rinner, C. (2015). Introduction to GIS-MCDA. In: Multicriteria Decision Analysis in Geographic Information Science. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74757-4_2

Download citation

Publish with us

Policies and ethics