Skip to main content

An FPGA Design to Achieve Fast and Accurate Results for Molecular Dynamics Simulations

  • Conference paper
Book cover Parallel and Distributed Processing and Applications (ISPA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4742))

Abstract

A Molecular Dynamics (MD) system is defined by the position and momentum of particles and their interactions. The dynamics of a system can be evaluated by an N-body problem and the simulation is continued until the energy reaches equilibrium. Thus, solving the dynamics numerically and evaluating the interaction is computationally expensive even for a small number of particles in the system. We are focusing on long-ranged interactions, since the calculation time is O(N2) for an N particle system. There are many existing algorithms aimed at reducing the calculation time of MD simulations. Multigrid (MG) method [1] reduces O(N2) calculation time to O(N) time while still achieving reasonable accuracy. Another movement to achieve much faster calculation time is running MD simulation on special purpose processors and customized hardware with ASICs or FPGAs. In this paper, we design and implement an FPGA-based MD simulator with an efficient MG method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  2. Skeel, R.D., Texcan, I.: Multiple Grid methods for Classical molecular Dynamics. J. Comput. Chem. (2002)

    Google Scholar 

  3. Izaguirre, J.A., Matthey, T.: Parallel multigrid summation of the N-body problem (2004)

    Google Scholar 

  4. Rankin, W., Board, J.: A Portable Distributed Implementation of the Parallel Multipole Tree Algorithm. In: Proceedings IEEE Symposium on High Performance Distributed Computing (1995)

    Google Scholar 

  5. Banerjee, S., Board Jr., J.A.: Efficient charge assignment and back interpolation in multigrid methods for molecular dynamics. Journal of Computational Chemistry, 26–29 (2005)

    Google Scholar 

  6. Sagui, C., Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules. Journal of Chemical Physics (2006)

    Google Scholar 

  7. Ewald, P.P.: Ann. Phys. Leipzig IV, 253 (1920)

    Google Scholar 

  8. Beckers, J., Lowe, C.P, De Leeuw, S.W.: Mol. Simul. 20, 369 (1998)

    Google Scholar 

  9. York, D., Yang, W.: The fast fourier poisson method for calculating ewald sums. J. Chem. Phys. (1994)

    Google Scholar 

  10. Briggs, E.L., Sullivan, D.J., Bernholc: Real-space multigrid-based approach to large-scale electronic structure calculations. Physical Review B 54(20) (1996)

    Google Scholar 

  11. Matthey, T., Izaquirre, J.: ProtoMol: A molecular dynamics framework with incremental parallelization. In: Proc. 10th SIAM Conference on Parallel Processing for Scientific Computing (2001)

    Google Scholar 

  12. Bernard, P., Gautier, T.: Large scale simulation of parallel molecular dynamics, Parallel and Distributed Processing. In: 13th International and 10th Symposium on Parallel and Distributed Processing (1999)

    Google Scholar 

  13. Sagui, C., Darden, T.A.: MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES: Long-Range Electrostatic Effects. Annual Review of Biophysics and Biomolecular Structure (1999)

    Google Scholar 

  14. Kaviani, A., Rown, S.: Hybrid FPGA architecture. In: Fourth International ACM Symposium on Field-Programmable Gate Arrays, pp. 3–9 (1996)

    Google Scholar 

  15. Komeiji, Y., Yokoyama, H., Uebayasi, M., Taiji, M., et al.: A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer. Journal of Computational Chemistry 20(2), 185–199 (1999)

    Article  Google Scholar 

  16. Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., Taiji, M.: Fast and accurate molecular dynamics simulation of a protein using a special-purpose computer. Journal of Computational Chemistry 18(12) (1998)

    Google Scholar 

  17. Toyoda, S., Miyagawa, H., kitamura, K.: Development of MD Engine: High-Speed Accelerator with Parallel Processor Design for Molecuclar Dynamics Simulations. Journal of Computational Chemistry 20(2), 185–199 (1999)

    Article  Google Scholar 

  18. Azizi, N., Kuon, I., Egier, A., Darabiha, A., Chow, P.: Reconfigurable Molecular Dynamics Simlator. In: 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2004), pp. 197–206 (2004)

    Google Scholar 

  19. Gu,Y., Tom, V., Martin, C.: Herbordt: Accelerating Molecular Dynamics Simulations with Configurable Circuits. IEEE Proceedings on Computers & Digital Techniques (2006)

    Google Scholar 

  20. Amisaki, T., Fujiwara, T., Kusumi, A., Miyagawa, H., Kiamura, K.: Error evaluation in the design of a special-purpose processor that calculates nonbonded forces in molecular dynamics simulation. Journal of computational chemistry 16(9), 1120–1130 (1995)

    Article  Google Scholar 

  21. Vaidyanathan, R., Trahan, J.L.: Dynamic Reconfiguration. Springer, Heidelberg (2004)

    Google Scholar 

  22. Cho, E., Bourgeois, A.G.: Multi-level Charge Assignment for Accurate and Efficient Molecular Dynamics (MD) Simulation. In: International Modeling and Simulation Multiconference (2007)

    Google Scholar 

  23. TM – 3 documentation, http://www.eecg.utoronto.ca/~tm3/

  24. Allen, M.P., Tildesleley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  25. Amisaki, T., Fujiwara, T., Kusumi, A., et al.: Error evaluation in the design of a special-purpose processor that calculates nonbonded forces in molecular. Journal of computational chemistry 16(9), 1120–1130 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan Stojmenovic Ruppa K. Thulasiram Laurence T. Yang Weijia Jia Minyi Guo Rodrigo Fernandes de Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, E., Bourgeois, A.G., Tan, F. (2007). An FPGA Design to Achieve Fast and Accurate Results for Molecular Dynamics Simulations. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74742-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74741-3

  • Online ISBN: 978-3-540-74742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics