Skip to main content

Initialization

  • Chapter
  • First Online:
Book cover Data Assimilation

Abstract

The spectrum of atmospheric motions is vast, encompassing phenomena having periods ranging from seconds to millennia. The motions of interest to the forecaster typically have timescales of a day or longer, but the mathematical models used for numerical prediction describe a broader span of dynamical features than those of direct concern. For many purposes these higher frequency components can be regarded as noise contaminating the motions of meteorological interest. The elimination of this noise is achieved by adjustment of the initial fields, a process called initialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baer, F., 1977. Adjustment of initial conditions required to suppress gravity oscillations in nonlinear flows. Beitr. Phys. Atmos., 50, 350–366.

    Google Scholar 

  • Bubnová, R., G. Hello, P. Bénard and J.-F. Geleyn, 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Weather Rev., 123, 515–535.

    Article  Google Scholar 

  • Charney, J.G., 1955. The use of the primitive equations of motion in numerical prediction. Tellus, 7, 22–26.

    Article  Google Scholar 

  • Charney, J.G., R. Fjørtoft and J. von Neumann, 1950. Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254.

    Article  Google Scholar 

  • Chen, M. and X.-Y. Huang, 2006. Digital filter initialization for MM5. Mon. Weather Rev., 134, 1222–1236.

    Article  Google Scholar 

  • Daley, R., 1991. Atmospheric Data Assimilation. Cambridge University Press, Cambridge, 457pp.

    Google Scholar 

  • Gauthier, P. and J.-N. Thépaut, 2001. Impact of the digital filter as a weak constraint in the pre-operational 4D-Var assimilation system of Météo-France. Mon. Weather Rev., 129, 2089–2102.

    Article  Google Scholar 

  • Gustafsson, N., 1992. Use of a digital filter as weak constraint in variational data assimilation. Proceedings of the ECMWF Workshop on Variational Assimilation, with Special Emphasis on Three-Dimensional Aspects, pp 327–338. Available from the European Centre for Medium Range Weather Forecasting, Shinfield Park, Reading, Berks. RG2 9AX, UK.

    Google Scholar 

  • Hamming, R.W., 1989. Digital Filters. Prentice-Hall International, Inc., Englewood Cliffs, NJ, 284pp.

    Google Scholar 

  • Haurwitz, B., 1940. The motion of atmospheric disturbances on the spherical earth. J. Marine Res., 3, 254–267.

    Google Scholar 

  • Hinkelmann, K., 1951. Der Mechanismus des meteorologischen Lärmes. Tellus, 3, 285–296.

    Article  Google Scholar 

  • Hinkelmann, K., 1959. Ein numerisches Experiment mit den primitiven Gleichungen. Vol. Rossby Memorial Volume. Rockerfeller lnstitute Press, New York, NY, pp 486–500.

    Google Scholar 

  • Holton, J.R., 1992. An Introduction to Dynamic Meteorology, 3rd edition. International Geophysics Series, vol. 48. Academic Press, San Diego. Chap. 7.

    Google Scholar 

  • Huang, X.-Y. and P. Lynch, 1993. Diabatic digital filter initialization: Application to the HIRLAM model. Mon. Weather Rev., 121, 589–603.

    Article  Google Scholar 

  • Huang, X.-Y., Q. Xiao, D.M. Barker, X. Zhang, J. Michalakes, W. Huang, T. Henderson, J. Bray, Y. Chen, Z. Ma, J. Dudhia, Y. Guo, X. Zhang, D.-J. Won, H.-C. Lin and Y.-H. Kuo, 2009. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Weather Rev., 137, 299–314.

    Article  Google Scholar 

  • Huang, X.-Y. and X. Yang, 2002. A New Implementation of Digital Filtering Initialization Schemes for HIRLAM. Technical Report 53, 36pp. Available from HIRLAM-5, c/o Per Undén, SMHI, S-60176 Norrköping, Sweden.

    Google Scholar 

  • Kasahara, A., 1976. Normal modes of ultralong waves in the atmosphere. Mon. Weather Rev., 104, 669–690.

    Article  Google Scholar 

  • Leith, C.E., 1980. Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958–968.

    Article  Google Scholar 

  • Lynch, P., 1997. The Dolph-Chebyshev window: A simple optimal filter. Mon. Weather Rev., 125, 655–660.

    Article  Google Scholar 

  • Lynch, P., 2006. The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press, Cambridge, 279pp.

    Google Scholar 

  • Lynch, P., D. Giard and V. Ivanovici, 1997. Improving the efficiency of a digital filtering scheme. Mon. Weather Rev., 125, 1976–1982.

    Article  Google Scholar 

  • Lynch, P. and X.-Y. Huang, 1992. Initialization of the HIRLAM model using a digital filter. Mon. Weather Rev., 120, 1019–1034.

    Article  Google Scholar 

  • Lynch, P., R. McGrath and A. McDonald, 1999. Digital Filter Initialization for HIRLAM. HIRLAM Technical Report 42, 22pp. Available from HIRLAM-5, c/o Per Undén, SMHI, S-60176 Norrköping, Sweden.

    Google Scholar 

  • Machenhauer, B., 1977. On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253–271.

    Google Scholar 

  • McIntyre, M.E., 2003. Balanced Flow. Vol. Encyclopedia of Atmospheric Sciences, J.R. Holton, J. Pyle, and J.A. Curry (eds.), 6 vols, ISBN 0-12-227090-8. Academic Press, London.

    Google Scholar 

  • Miyakoda, K. and R.W. Moyer, 1968. A method for initialization for dynamic weather forecasting. Tellus, 20, 115–128.

    Article  Google Scholar 

  • Oppenheim, A.V. and R.W. Schafer, 1989. Discrete-Time Signal Processing. Prentice-Hall International, Inc., Englewood Cliffs, NJ, 879pp.

    Google Scholar 

  • Phillips, N.A., 1960. On the problem of initial data for the primitive equations. Tellus, 12, 121–126.

    Article  Google Scholar 

  • Phillips, N.A., 1973. Principles of Large Scale Numerical Weather Prediction. Vol. Dynamic Meteorology, P. Morel (ed.). D. Reidel, Dordrecht, pp 1–96.

    Google Scholar 

  • Richardson, L.F., 1922. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, 236pp. Reprinted by Dover Publications, New York, 1965.

    Google Scholar 

  • Rossby, C.G., 1939. Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. J. Marine Res., 2, 38–55.

    Article  Google Scholar 

  • Sasaki, Y., 1958. An objective method based on the variational method. J. Met. Soc. Jpn, 36, 77–88.

    Google Scholar 

  • Wee, T.-K. and Y.-H. Kuo, 2004. Impact of a digital filter as a weak constraint in MM5 4DVAR: An observing system simulation experiment. Mon. Weather Rev., 132, 543–559.

    Article  Google Scholar 

  • Williamson, D. and C. Temperton, 1981. Normal mode initialization for a multilevel gridpoint model. Part II: Nonlinear aspects. Mon. Weather Rev., 109, 745–757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lynch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lynch, P., Huang, XY. (2010). Initialization. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_9

Download citation

Publish with us

Policies and ethics