Skip to main content

A Survey on Use of Soft Computing Methods in Medicine

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Abstract

The objective of this paper is to introduce briefly the various soft computing methodologies and to present various applications in medicine. The scope is to demonstrate the possibilities of applying soft computing to medicine related problems. The recent published knowledge about use of soft computing in medicine is observed from the literature surveyed and reviewed. This study detects which methodology or methodologies of soft computing are used frequently together to solve the special problems of medicine. According to database searches, the rates of preference of soft computing methodologies in medicine are found as 70% of fuzzy logic-neural networks, 27% of neural networks-genetic algorithms and 3% of fuzzy logic-genetic algorithms in our study results. So far, fuzzy logic-neural networks methodology was significantly used in clinical science of medicine. On the other hand neural networks-genetic algorithms and fuzzy logic-genetic algorithms methodologies were mostly preferred by basic science of medicine. The study showed that there is undeniable interest in studying soft computing methodologies in genetics, physiology, radiology, cardiology, and neurology disciplines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: “Fuzzy Sets”. Information and Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics V. SMC-3(1), 28–44 (1973)

    Google Scholar 

  3. Zadeh, L.A.: Possibility Theory and Soft Data Analysis (University of California, Berkeley, Memorandum UCB/ERL M79/66, 1979)

    Google Scholar 

  4. Akay, M., Cohen, M., Hudson, D.: Fuzzy sets in life science. Fuzzy Sets and Systems 90, 219–224 (1997)

    Article  Google Scholar 

  5. Szolovits, P., Patil, R.S., Schwartz, W.B.: Artificial intelligence in medical diagnosis. Ann. Internal Med. 108, 80–87 (1998)

    Google Scholar 

  6. Clancey, W.J.: The epistemology of a rule-based expert system - a framework for explanation. Artificial Intelligence V.20, 215–251 (1983)

    Article  Google Scholar 

  7. Abbod, M.F., Diedrich, G.K., Linkens, D.A., Mahfouf, M.: Survey of utilization of fuzzy technology in Medicine and Healthcare. Fuzzy Sets and Systems V.120, 331–349 (2001)

    Article  Google Scholar 

  8. Abbod, M.F., Linkens, D.A., Mahfouf, M., Dounias, G.: Survey on the use of smart and adaptive engineering systems in medicine. Artificial Intelligence in Medicine 26, 179–209 (2002)

    Article  Google Scholar 

  9. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilization in medicine. Artificial Intelligence in Medicine V.21(1-3), 27–42 (2001)

    Article  Google Scholar 

  10. Ma, Y., Dai, R., Li, L., Wu, C.: The state and development of cell image segmentation technology. Journal of Biomedical V.19(3), 487–492 (2002)

    Google Scholar 

  11. Das, A., Reddy, N P, Narayanan, J.: Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals. Computer Methods and Programs in Biomedicine V.64(2), 87–99 (2001)

    Article  Google Scholar 

  12. Catto, J.W.F., Linkens, D.A., Abbod, M.F., Chen, M., Burton, J.L., Feeley, K.M., Hamdy, F.C.: Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Clinical Cancer Research: An Official Journal of The American Association for Cancer Research V.9(11), 4172–4177 (2003)

    Google Scholar 

  13. Futschik, M.E., Reeve, A., Kasabov, N.: Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue. Artificial Intelligence In Medicine V.28(2), 165–189 (2003)

    Article  Google Scholar 

  14. Agatonovic-Kustrin, S., Beresford, R., Yusof, A.P.: Theoretically-derived molecular descriptors important in human intestinal absorption. Journal of Pharmaceutical and Biomedical Analysis V.25(2), 227–237 (2001)

    Article  Google Scholar 

  15. Agatonovic-Kustrin, S., Evans, A., Alany, R.G.: Prediction of corneal permeability using artificial neural networks. Die Pharmazie V58(10), 725–729 (2003)

    Google Scholar 

  16. Agatonovic-Kustrin, S., Ling, L.H., Tham, S.Y., Alany, R.G.: Molecular descriptors that influence the amount of drugs transfer into human breast milk. Journal of Pharmaceutical and Biomedical Analysis V.29(1-2), 103–119 (2002)

    Article  Google Scholar 

  17. Rask, J.M., Gonzalez, R.V., Barr, R.E.: Genetically-designed neural networks for error reduction in an optimized biomechanical model of the human elbow joint complex. Computer Methods in Biomechanics and Biomedical Engineering V.7(1), 43–50 (2004)

    Google Scholar 

  18. Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biological Cybernetics V.84(1), 1–11 (2001)

    Article  Google Scholar 

  19. Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology In Biomedicine V.9(3), 459–467 (2005)

    Article  Google Scholar 

  20. Meyer-Baese, A., Wismueller, A., Lange, O.: Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis. IEEE Transactions on Information Technology in Biomedicine V.8(3), 387–398 (2004)

    Article  Google Scholar 

  21. Wismuller, A., Meyer-Baese, A., Lange, O., Auer, D., Reiser, M.F., Sumners, D.W.: Model-free functional MRI analysis based on unsupervised clustering. Journal of Biomedical Informatics V.37(1), 10–18 (2004)

    Article  Google Scholar 

  22. Zhang, X.S., Huang, J.W., Roy, R.J.: Modeling for neuromonitoring depth of anesthesia. Critical Reviews in Biomedical Engineering V.30(1-3), 131–173 (2002)

    Article  Google Scholar 

  23. Allen, R., Smith, D.: Neuro-fuzzy closed-loop control of depth of anesthesia. Artificial Intelligence in Medicine V.21(1-3), 185–191 (2001)

    Article  Google Scholar 

  24. Ubeyli, E.D., Guler, I.: Adaptive neuro-fuzzy inference systems for analysis of internal carotid arterial Doppler signals. Computers in Biology and Medicine V.35(8), 687–702 (2005)

    Google Scholar 

  25. Kashihara, K., Kawada, T., Uemura, K., Sugimachi, M., Sunagawa, K.: Adaptive predictive control of arterial blood pressure based on a neural network during acute hypotension. Annals of Biomedical Engineering V.32(10), 1365–1383 (2004)

    Article  Google Scholar 

  26. Wu, L.Y., Hu, Y.H.: Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Transactions on Bio-Medical Engineering V.51(7), 1269–1273 (2004)

    Google Scholar 

  27. Serhatlioglu, S., Bozgeyik, Z., Ozkan, V., Hardalac, F., Guler, I.: Neurofuzzy classification of the effect of diabetes mellitus on carotid artery. Journal of Medical Systems V.27(5), 457–464 (2003)

    Article  Google Scholar 

  28. Kwok, H.F., Linkens, D.A., Mahfouf, M., Mills, G.H.: Rule-base derivation for intensive care ventilator control using ANFIS. Artificial Intelligence in Medicine V.29(3), 185–201 (2003)

    Article  Google Scholar 

  29. Goode, K.M., Linkens, D.A., Bourne, P.R., Cundill, J.G.: Development of a fuzzy rule-based advisor for the maintenance of mechanically ventilated patients in ICU: a model-based approach. Biomedical Engineering, Applications Basis Communications 10, 236–246 (1998)

    Google Scholar 

  30. Zhang, J.H., Bohme, J.F., Zeng, Y.J.: A nonlinear adaptive fuzzy approximator technique with its application to prediction of non-stationary EEG dynamics and estimation of single-sweep evoked potentials. Technology And Health Care: Official Journal of The European Society for Engineering and Medicine 13(1), 1–21 (2005)

    Google Scholar 

  31. Palaniappan, R., Paramesran, R., Nishida, S., Saiwaki, N.: A new brain-computer interface design using fuzzy ARTMAP. IEEE Transactions on Neural Systems and Rehabilitation Engineering V.10(3), 140–148 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yardimci, A. (2007). A Survey on Use of Soft Computing Methods in Medicine. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics