Skip to main content

Nonphotographic Imaging from Aircraft and Space-borne Platforms

  • Chapter
Environmental Geology

Abstract

Instead of using light-sensitive film, nonphotographic imaging systems detect the incoming electromagnetic (EM) radiation with semiconductor detectors or special antennas. While photography is limited to a spectral range from 0.3 to 0.9 μm, multispectral scanners (MSS) can operate in wavelength regions from 0.3 to approximately 14 um (Lillesand & Kiefer, 1994; Gupta, 2003). This range includes radiation in the near ultraviolet, visible light, near, middle, and thermal infrared (Table 3.1-1). MSS can work in rather narrow spectral bands of a few nanometers. Thus, such remote sensing can focus on specific spectral features to identify detailed physical and chemical characteristics of the land surface objects of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  • Albertz, J. (2001): Einführung in die Fernerkundung, Grundlagen der Interpretation von Luft-und Satellitenbildern. Wissenschaftliche Buchgesellschaft, Darmstadt.

    Google Scholar 

  • Anger, C. D., Babey, S. K. & Adamson, R. A. (1990): A new approach to Imaging Spectroscopy. Proceedings of SPIE, 72, 72–86.

    Article  Google Scholar 

  • Azcue, J.M., Murdoch, A., Rosa, F., Hall, G. E. M., Jackson, T. A. & Reynoldson, T. (1995): Trace elements in water, sediments, porewater, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. J. Geochem. Explor., 52, 25–34.

    Article  Google Scholar 

  • Babey, S. K. & Anger, C. D. (1989): A Compact Airborne Spectrographic Imager (CASI). IGARSS Proceedings, 2, 1028–1031.

    Google Scholar 

  • Berger, B. R. (1986): The geological attributes of Au-Ag-base metal epithermal deposits. In: Erickson, R., comp., Characteristics of mineral-deposit occurrences, USGS Open File Report, 82–795, 119–126.

    Google Scholar 

  • Bianci, R., Cavalli, R. M., Fiumi, L., Maraino, C. M. & Pignatti, S. (1997): Airborne remote sensing: Results of two years of imaging spectrometry for the study of environmental problems. In: Remote Sensing’ 96, Balkema, Rotterdam, 269–273.

    Google Scholar 

  • Boldt, C. M. K. & Scheibner, B. J. (1987): Remote sensing of mine waste. U.S. Bureau of Mines Information Circular 9152.

    Google Scholar 

  • Bontebal, M. (2001): Land Subsidence in Bangkok: An Overview of Changes in Land Subsidence over the last 25 Years. M. Sc. Thesis, Free University of Amsterdam, Netherlands.

    Google Scholar 

  • Britton, B. (2002): Uses of Satellite Imagery for Planning or Site Selection, EOM, 11, 2.

    Google Scholar 

  • Brown, R. L. (1991): Cripple Creek then and now. Sundance Publications, Ltd., Denver.

    Google Scholar 

  • Chuchip, K. (1997): Satellite Date Analysis and Surface Modeling for Land Use and Land Cover Classification in Thailand. Berliner Geographische Studien, 46, Berlin.

    Google Scholar 

  • Clark, R. N. (1999): Spectroscopy of Rocks and Minerals, and Principles of the Spectroscopy, In: Rencz, A. N. (Ed.): Remote Sensing for the Earth Sciences, 1, 3–58.

    Google Scholar 

  • Clark, R.N. (1999): Spectroscopy of Rocks and Minerals and Principles of Spectroscopy, In: A.N. Rencz (Ed.). Manual of Remote Sensing, Chapter 1, Wiley and Sons, New York, 3–58.

    Google Scholar 

  • Clark, R. N., Gallagher, A. J. & Swayze, G. A. (1990a): Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In: Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, 176–186.

    Google Scholar 

  • Clark, R. N., King, T. V. V., Ager, C. & Swayze, G. A. (1995): Initial vegetation species and senescence/stress mapping in the San Luis Valley, Colorado using imaging spectrometer data. In: Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23.–26., R.O. Green, Ed., JPL Publication 95-1, 35–38.

    Google Scholar 

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. & Vergo, N. (1990b): High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res., 95, 12653–12680.

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Koch, C., Gallagher, A. & Ager, C. (1992): Mapping Vegetation Types with the Multiple Spectral Feature Mapping Algorithm in both Emission and Absorption. In: Summaries of the Third Annual JPL Airborne Geosciences Workshop, 1, AVIRIS Workshop, held in Pasadena, CA, on June 1.–5., 1992. JPL Publication 92-14, 60–62.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V. & Calvin, W. M. (1993): The U. S. Geological Survey, Digital Spectral Library, 1, 0.2 to 3.0 μm, USGS, Open File Report 93–592, 1340, (Also published as a USGS Bulletin, 1300+pp, 1996).

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., Mcdoural, R. R., & Gent, C. A. (2003): Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., 108(E12), 5131, doi: 10.1029/2002JE001847, December, 2003. http://speclab.cr.usgs.gov/PAPERS/tetracorder

    Google Scholar 

  • Cloutis, E. A. (1989): Spectral Reflectance Properties of Hydrocarbons: Remote Sensing Implications. Science, 245, 165–168.

    Article  Google Scholar 

  • Colwell, R. N. (Ed.) (1983): Manual of Remote Sensing, 1, Theory, Instruments and Techniques, 2, Interpretation and Applications. American Society of Photogrammetry, Falls Curch.

    Google Scholar 

  • Conway, E. D. (1997): An Introduction to Satellite Image Interpretation. Johns Hopkins University Press.

    Google Scholar 

  • Cocks, T., Jenssen, R., Stewart, A., Wilson, I. & Shields, T. (1998): The Hymapth Airborne Hyperspectral Sensor: The System, Calibration and Performance. In: Schaepman, M. et al. Eds. 1st EARSeL Workshop on Imaging Spectroscopy, 37–42.

    Google Scholar 

  • Crawford, M. F. (1987): Preliminary Evaluation of Remote Sensing Data for Detection of Vegetation Stress Related to Hydrocarbon Microseepage: Mist Gas Field Oregon. Proc of 5th Thematic Conf on Remote Sensing for Exploration Geology, Environmental Research Institute of Michigan, 1, 161–177.

    Google Scholar 

  • Crawford, G. A. (1995): Environmental improvements by the mining industry in the Sudbury Basin of Canada. J. Geochem. Explor., 52, 267–284.

    Article  Google Scholar 

  • Curran, P. J. (1989): Remote sensing of foliar chemistry. Remote Sens. Environ., 30, 271–278.

    Article  Google Scholar 

  • Curran, P. J., Dungan, J. L., Macler, B.A.&Plummer, S. E. (1991): The effect of a red leaf pigment on the relationship between red edge and chlorphyll concentration. Remote Sens. Environ., 35, 69–76.

    Article  Google Scholar 

  • Curran, P. J., Dungan, J. L., Macler, B. A., Plummer, S. E. & Peterson, D. L. (1992): Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens. Environ., 39, 153–166.

    Article  Google Scholar 

  • Curran, P. J. & Kupiec, J. A. (1995): Imaging Spectrometry: A New Tool for Ecology. In: Danson, F. M. & Plummer, S. E. (Eds): Advances in environmental remote sensing. Wiley & Sons, Chichester, 71–88.

    Google Scholar 

  • Curtiss, B. & Ustin, S. L. (1989): Parameters effecting reflectance of coniferous forests in the region of chlorophyll absorption. In: Proc of IGARSS’ 89, 12th Can Symp on Remote Sensing, Vancouver, BC.

    Google Scholar 

  • Davis, A. D. & Webb, C. J. (1995): Abandoned mines inventory and reclamation in the Black Hills of South Dakota. In: Schemer, B. J., Chatwin, T. D., El-Shall, H., Kawatra, S. K. & Torma, A. E. (Eds): New remediation technology in the changing environmental arena. Littleton, Colorado. Society for Mining, Metallurgy, and Exploration, Inc., 27–33.

    Google Scholar 

  • De Vos, K. I, Blowes, D. W., Robertson, W. D. & Greenhouse, J. P. (1995): Delineation and evaluation of a plume of tailings derived water, Copper Cliff, Ontario. Mining and the Environment, Proceedings, Sudbury, 673–682.

    Google Scholar 

  • Dias, N. W. (2002): Applying Red-Edge & WaterAbsorption Geometry Analyses to Estimated Hardwood Forest Structure and Biomass by Using Hyperspectral Data, EOM, 11, 2.

    Google Scholar 

  • Douglas, W. J. (1995): Environmental GIS — Applications to industrial facilities. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Ehrenberg, M. (1991): Beprobungslose Altlastenerkundung, wlb Wasser, Luft und Boden, 7–8, 56–59.

    Google Scholar 

  • Ekwan Technology Corporation: www.ekwantech.com

    Google Scholar 

  • Ellis, J. M., Davis, H. H. & Zamudio, J. A. (2001): Exploring for onshore oil seeps with hyperspectral imaging. Oil and Gas Journal, 99,10, 49–58.

    Google Scholar 

  • Erb, W. & Endres, L. (1989): Leitfaden der Spektroradiometrie. Springer, Berlin.

    Google Scholar 

  • Fricker, P., Sandau, R. & Walker, A. S. (1999): Digital photogrammetric cameras: possibilities and problems. In: Fritsch, D. & Spiller, R. (Eds.): Photogrammetric Week’ 99, Wichmann Verlag, Heidelberg, 71–82.

    Google Scholar 

  • Gaffey, S. J., Mcfadden, L. A., Nash, D. & Pieters, C. M. (1993): Ultraviolet, visible, and nearinfrared reflectance spectroscopy: Laboratory spectra of geologic materials. In: Pieters, C. M. & Englert, P. A. J. (Eds.): Remote Chemical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, 43–77.

    Google Scholar 

  • Gamba, P. and B. Houshmand(2002): Joint analysis of SAR, LIDAR and aerial imagery for simultaneous extraction of land cover, DTM and 3D shape of buildings, International Journal of Remote Sensing, 23,20, 4439–4450.

    Article  Google Scholar 

  • Gates, D. M., Keegan, H. J., Schleter, J. D. & Weidner, V. R. (1965): Spectral properties of plants. Applied Optics, 4/1, 11–20.

    Article  Google Scholar 

  • Gebhardt, A. (1981): Thermografie, Anwendungen bei der geophysikalischen Naherkundung. Freiberger Forschungshefte, C367, Dt. Verlag f. Grundstoffindustrie, Leipzig.

    Google Scholar 

  • GIM International (2001): Product Survey on Airborne Laser Scanner — an Overview.

    Google Scholar 

  • Glaeser, C. (1989): Beiträge zur Anwendung der Multispektraltechnik für die Lösung geowissenschaftlicher Aufgaben. Dissertation B, Martin-Luther-Universität, Halle-Wittenberg, Textband.

    Google Scholar 

  • Goodchild, M. F., Steyaert, L. T., Parks, B. O., Johnston, C., Maidment, D., Crane, M. & Glendinning, S. (Eds.) (1996): GIS and environmental modeling. Progress and research issues: GIS World Books, Fort Collins, Colorado.

    Google Scholar 

  • Graham, D. F., St-Arnand, E. L. & Rencz, A. N. (1994): Canada Geologic Survey Monitors Mine Tailings, Disposal sites with Landsat. EOS Magazine, 38–41.

    Google Scholar 

  • Gunn, J. M. (ed.) (1995): Restoration and Recovery of an Industrial Region. Springer, New York.

    Google Scholar 

  • Gupta, R. P. (1991): Remote Sensing Geology. Springer, Berlin.

    Google Scholar 

  • Gupta, R. P. (2003): Remote Sensing Geology. Springer, Berlin.

    Google Scholar 

  • Hauff, Ph. L. (1993): Spectral Reflectance Properties of Oil and Hydrocarbon-Bearing Rocks and Sediments. Application Note, 1, 1993, Spectral International Inc., Lafayette, CO.

    Google Scholar 

  • Heier, H. (1999): Application and markets for digital airborne cameras. In: Fritsch, D. & Spiller, R. (Eds.): Photogrammetric Week’ 99, Wichmann Verlag, Heidelberg, 43–49.

    Google Scholar 

  • Härig, B., Kühn, F., Oschütz, F. & Lehmann F. (2001): HyMap hyperspectral remote sensing to dedect hydrocarbons. Int. J. Remote Sensing, 22,8, 1413–1422.

    Article  Google Scholar 

  • Hornsby, J. K., Bruce, B. & Mackenzie-Greive, G. (1989): Monitoring Vegetation Regrowth on Placer Mine Tailings, Bonanza Creek, Yukon Territory. In: Proc of Int Symp on Remote Sensing, 2518–2521.

    Google Scholar 

  • Hunt, G. R. & Salisbury, J. W. (1976): Visible and nearinfrared spectra of minerals and rocks: XII. Sedimentary Rocks. Mod. Geol., 5, 211–217.

    Google Scholar 

  • Hunt, G. R. (1977): Spectral signature of particulate minerals in the visible and near infrared. Geophysics, 42, 501–513.

    Article  Google Scholar 

  • Irvine, J. M., Stahl, G., Odenweller, J., Smyre, J. L., Evers, T. K., Dale, H. & King, A. L. (2000): Thermal Remote Sensing to Detect Buried Waste Material (Oak Ridge, U.S.A.). In: Kuehn, F., King, T., Hoerig, B.&Peters, D. (Eds.): Remote Sensing for Site Characterization, Springer Verlag, Berlin, 96–105.

    Google Scholar 

  • Jansen, W. T. (1994): The Mapping of Mineral Distributions Using Remotely Sensed Hyperspectral Images and Standard Spectral Libraries. Int. Symposium on Remote Sensing and GIS for Site Characterizations — Applications and Standards, ASTM, San Francisco, Jan. 27.–28. 1994.

    Google Scholar 

  • Johnson, A. I., Pettersson, C. B. & Fulton, J. L. (Eds.) (1992): Geographic information systems (GIS) and mapping — Practices and standards: ASTM, Publication STP, 1126, 346.

    Google Scholar 

  • Kersten, T., Baltsavias, E., Schwarz, M. & Leiss, I. (2000): IKONOS-2 CARTERRA™ GEO — erste geometrische Genauigkeitsuntersuchungen in der Schweiz mit hochaufgelösten Satellitendaten. VPKOL 8, 2000.

    Google Scholar 

  • King, D. J. (1993): Digital frame cameras: the next generation of low cost remote sensing sensors. In: Proc of ASPRS Biennial Workshop on Photography and Videography in the Plant Sciences, Logan, Utah.

    Google Scholar 

  • King, T. V. V. & Ridley, W. I. (1987): Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications. J. Geophys. Res., 92, 11457–11469.

    Article  Google Scholar 

  • King, T. V. V. & Clark, R. N. (1989): Spectral Characteristics of Chlorites and MgSerpentine Using High-Resolution Reflectance Spectroscopy. J. Geophys. Res., 94, 13997–14008.

    Article  Google Scholar 

  • King, T. V. V. (Ed.) (1995): Environmental Considerations of Active and Abandoned Mine Lands: Lessons From Summitville, Colorado. USGS Bulletin 2220. 38.

    Google Scholar 

  • King, T. V. V., Clark, R. N. & Gregg, A. S. (2000): Applications of Imaging Spectroscopy Data: A Case Study at Summitville, Colorado. In: Kuehn, F., King, T., Hoerig, B. & Peters, D. (Eds.): Remote Sensing for Site Characterization, Springer, Berlin, 164–185.

    Google Scholar 

  • Kokaly, R. F., Clark, R. N. & Livo, K. E. (1987): Mapping the biology and mineralogy of Yellowstone National Park using imaging spectroscopy. In: Summaries of 7th Annual JPL Airborne Earth Science Workshop, R.O. Green, ED., JPL 97–121, 1.

    Google Scholar 

  • Koschmann, A. H. (1949): Structural control of the gold deposits of the Cripple Creek district, Teller County, Colorado. USGS Bulletin 955-B, 60.

    Google Scholar 

  • Kronberg, P. (1985): Fernerkundung der Erde. Erike, Stuttgart.

    Google Scholar 

  • Kruse, F. A., Hauff, P. L., Dietz, I., Brock, J. C. & Hampton, L. R. (1989): Characterization and mapping of mine waste at Leadville, Colorado using imaging spectroscopy. Boulder, Center for the Study of Earth from Space, U of Colorado, EPA Contract No. 68-01-7251, 2.

    Google Scholar 

  • Kühn, F. & Härig, B. (1995): Environmental Remote Sensing for Military Excercise Places. — Remote Sensing and GIS for Site Characterizations: Applications and Standards, ASTM STP 1279, American Society for Testing and Materials, 5–16.

    Google Scholar 

  • Kühn, F. & Härig, B. (1995): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, 1, Geofernerkundung. Springer, Berlin.

    Google Scholar 

  • Kühn, F. & Oleikiewitz, P. (1983): Die Nutzung der Multispektraltechnik zur Früherkennung von senkungs-und erdfallgefährdeten Gebieten. Z. angew. Geol. 29, 6, 71–74.

    Google Scholar 

  • Kühn, F., Trembich, G. & Härig, B. (1997): Multisensor Remote Sensing to Evaluate Hazards Caused by Mining. In: Proceedings of the Twelfth International Conference on Applied Geologic Remote Sensing, 17.–19. November, Denver, Colorado, ERIM, I, 425–432.

    Google Scholar 

  • Kühn, F., Trembich, G. & Härig, B. (1999): Satellite and Airborne Remote Sensing to Detect Hazards Caused by Underground Mining. In: Proceedings of the Thirteenth International Conference on Applied Geologic Remote Sensing, 1.–3. March, Vancouver, British Columbia, Canada, ERIM, II, 57–64.

    Google Scholar 

  • Kuehn, F., King, T., Hoerig, B. & Peters, D. (2000): Remote Sensing for Site Characterization. Methods in Enviromental Geology. Springer, Berlin.

    Google Scholar 

  • Kühn, F., Margane, A., Tatong, T. & Wever, T. (2004): InSAR — Based Land Subsidence Map for Bangkok, Thailand. Z. Angew. Geol. 1/2004, 74–81.

    Google Scholar 

  • Lillesand, T. M. & Kiefer, R. W. (1994): Remote Sensing and Image Interpretation. 3rd edition, Wiley & Sons, New York.

    Google Scholar 

  • Lintz, J. & Simonett, D. S. (Eds.) (1976): Remote Sensing of Environment. Addison-Wesley, London.

    Google Scholar 

  • Livo, K. E. (1994): Use of remote sensing to characterize hydrothermal alteration of the Cripple Creek area, Colorado. Colorado School of Mines, M. Sc. Thesis T-4613 (unpubl), Golden.

    Google Scholar 

  • Lowe, D. S. (1969): Optical sensors. In: Principles and applications to earth resources surveys. CNS and Univ. of Michigan, Paris, 73–136.

    Google Scholar 

  • Lyon, J. G. & Mccarthy, J. (Eds.) (1995): Wetland and environmental applications of GIS. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Lyon, R. J. P. (1994): Weathering and desert varnish in arid terrains, In: Proceedings of the First International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, Sept. 11.–15., 1994. Ann Arbor, Environmental Research Institute of Michigan, 1, 257–268.

    Google Scholar 

  • Mccarthy, F., Cheng, P. & Toutin, T. (2000): Case Study of Using IKONOS Imagery in Small Municipalities. EOM 11.

    Google Scholar 

  • Mcgregor, R. G., Blowes, D. W. & Robertson, W. D. (1995): The Application of chemical Extractions to Sulfide Tailings at the Copper cliff Tailings Area, Sudbury, Ontario. Mining and the Environment, Sudbury 95, Proceedings, Sudbury, 1133–1142.

    Google Scholar 

  • Mccann, M. E. & King, A. (1995): Case Study of Advanced Technologies for Hydrological Site Characterization. Mining and the Environment, Sudbury 95 Proceedings, Sudbury, 667–671.

    Google Scholar 

  • Meer, F. D. van der & Jong, S. M. de (Eds.) (2001): Imaging spectrometry: basic principles and prospective applications / Kluwer Academic.

    Google Scholar 

  • Meinel, G., Reder, J. & Neubert, M. (2001): IKONOS-Satellitenbilddaten und ihre Klassifikation — ein erster Erfahrungsbericht. Kartographische Nachrichten, 1, 2000, 40–46.

    Google Scholar 

  • Miller, V. & Miller, C. F. (1961): Photogeology. Mc Graw-Hill Book Company Inc. New York, 1961.

    Google Scholar 

  • Miller, J. R., Hare, E. W., Hollinger, A. B.&Sturgeon, D. R. (1987): Imaging spectroscopy as a tool for botanical mapping. In: Vane, G. (Ed): Imaging Spectroscopy II, International Society for Optical Engineering, Bellingham, WA, 108–113.

    Google Scholar 

  • Milton, N. M., Ager, C. M., Eiswerth, B. A. & Power, M. S. (1989): Arsenic and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sens. Environ., 30, 263–269.

    Article  Google Scholar 

  • Munts, S. R., Hauff, P. L., Seelos, A. & Mcdonald, B. (1993): Reflectance spectroscopy of selected base-metal bearing tailings with implications for remote sensing. In: Proc of 9th Thematic Conf on Geol Remote Sensing, Pasadena, CA, Feb. 8.–11., 1993: Ann Arbor, Environmental Research Institute of Michigan, 567–578.

    Google Scholar 

  • Mussokowski, R. (1983): A Technique for Mapping Environmental Change — using Digital Landsat Data.— COSPAR, Advances in Space Research, 8, 103–107.

    Google Scholar 

  • Murray, I. & Williams, P. C. (1987): Chemical principles of near-infrared. In: Williams, P. & Norries, K. (Eds): Near Infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, St. Paul, MN, 17–37.

    Google Scholar 

  • Ongsomwang, S. (1994): Forest Inventory, Remote Sensing and GIS (Geographic Information System) for Forest Management in Thailand. Berliner Geographische Studien, Berlin.

    Google Scholar 

  • Parkinson, C. L.&Mcguire, A. (Eds.) (1997): Using Color-Coded Satellite Images To Examine The Global Enviroment. University Science Books.

    Google Scholar 

  • Peters, D. C. & Phoebe, L. H. (2000): Multispectral Remote Sensing to Characterize Mine Waste (Cripple Creek and Goldfield, U.S.A). In: Kuehn, F., King, T., Hoerig, B. & Peters, D. (Eds.): Remote Sensing for Site Characterization, Springer, Berlin, 113–164.

    Google Scholar 

  • Pischel, P. & Neukum, G. (1999): The High Resolution Stereo Camera HRSC-A–Digital 3-D Image Acquisition; Photogrammetric Processing and Data Evaluation. In: Proceedings, Joint Workshop “Sensors and Mapping from Space 1999”, Institut für Photogrammetrie und Ingenieurvermessung, Universität Hannover, 18, 1999.

    Google Scholar 

  • Richards, I. A. (2005): Remote Sensing Digital Image Analysis. 4th ed., Springer, Berlin.

    Google Scholar 

  • Roberts, D. A., Adams, J. B. & Smith, M. O. (1993): Discriminating Green Vegetation, Non-Photosynthetic Vegetation and Soils in AVIRIS Data, Remote Sensing of Environment, 44(2/3), 255–270.

    Article  Google Scholar 

  • Roberts, D. A. & Herold, M. (2004): Imaging spectrometry of urban materials. In: King, P., Ramsey, M.S. and G. Swayze, (Eds.): Infrared Spectroscopy in Geochemistry, Exploration and Remote Sensing, Mineral Association of Canada, Short Course Series Volume 33, London, Ontario, 155–181. URL: http://www.ncgia.ucsb.edu/ncrst/research/pavementhealth/urban/imagingspectr ometry_of_urban_materials.pdf

    Google Scholar 

  • Rock, B. A. (1988): Comparison of in-situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing Environ, 24, 109–127.

    Article  Google Scholar 

  • Rowan, J. S., Barnes, S. J. A., Hetherington, S. L., Lambers, B. & Parsons, F. (1995): Geomorphology and pollution — the environmental impacts of lead mining, Leadhills, Scotland. J. Geochem. Explor., 52, 57–65.

    Article  Google Scholar 

  • Sabins, F. F. (1996): Remote sensing — Principles and interpretation. 3th. edition, Freeman, San Francisco.

    Google Scholar 

  • Salomons, W. (1995): Environmental impact of metals derived from mining activities. Processes, predictions, prevention. J. Geochem. Explor., 52, 5–23.

    Article  Google Scholar 

  • Sengupta, M. (1993): Environmental impacts of mining. Lewis, Boca Raton, Florida.

    Google Scholar 

  • Singhroy, V. H. (1992): Spectral Characterization of the Boreal Forest Species Associated with Geochemical Anomalies. International Geological Congress, Abstracts, Kyoto, Japan, 3, 980.

    Google Scholar 

  • Singhroy, V. H. (1995): Spectral characterization of vegetation at mine tailings. Mining and the Environment, Sudbury 95 Proceedings, Sudbury, 193–200.

    Google Scholar 

  • Singhroy, V. H.& Kruse, F. (1991): Detection of metal stress in the Boreal Forest species using the 670 μm chlorophyll band. ERIM, 8th Thematic Conf on Geologic Remote Sensing, 361–372.

    Google Scholar 

  • Slonecker, E. T. & Williams, D. J. (2001): Imaging spectroscopy for detecting fugitive environmental contaminants. Enviromental Protection Agency Report.

    Google Scholar 

  • Smith, R. B. (2001): Indroduction to Hyperspectral Imaging, Microimages Inc.

    Google Scholar 

  • Stewart, K. C. & Severson, R. C. (Eds.) (1994): Guidebook on the geology, history, and surface-water contamination and remediation in the area from Denver to Idaho Springs, Colorado. USGS Circular 1097, 55.

    Google Scholar 

  • Strathmann, F.-W. (1993): Taschenbuch zur Fernerkundung. Wichmann, Karlsruhe.

    Google Scholar 

  • Struhsacker, D. W. (1995): The importance of waste characterization in effective environmental planning, project design and reclamation. In: Scheiner, B. J., Chatwin, T. D., El-Shall, H., Kawatra, S. K. & Torma, A. E. (Eds): New remediation technology in the changing environmental arena: Littleton, Colorado, Society for Mining, Metallurgy, and Exploration, Inc., 19–25.

    Google Scholar 

  • Tandy, B. C. & Amos, E. (1985): Airborne thermal infrared linescan in geology. Proc of Intern Symp on Remote Sensing of Environment, 4th Thematic Conf “Remote Sensing for Exploration Geology”, San Francisco, California, 1.–4. April.

    Google Scholar 

  • Tang, L., Doerstel, C., Jacobson, K., Heipke, C. & Hinz, A. (2000): Geometric accuracy potential of the Digital Modular Camera, IAPRS, XXXIII, Amsterdam.

    Google Scholar 

  • Theilen-Willige, R. (1993): Umweltbeobachtung durch Fernerkundung. Enke, Stuttgart.

    Google Scholar 

  • Thompson, T. B., Trippel, A. D. & Dwelley, P. C. (1985): Mineralized veins and breccias of the Cripple Creek District, Colorado. Econom Geol, 80, 1669–1688.

    Article  Google Scholar 

  • Trevett, J. W. (1983): Imaging radar for resource surveys. Chapman & Hall, London

    Google Scholar 

  • Toutin, T. & Cheng, P. (2000): Demystification of IKONOS, EOM9, 7.

    Google Scholar 

  • U.S. Forest Service (1993): Acid drainage from mines on the national forests: a management challenge. Program Aid 1505, 12.

    Google Scholar 

  • Ustin, S. L., Martens, S. N., Curtiss, B. & Vanderbilt, V. C. (1994): Use of high spectral resolution sensors to detect air pollution injury in conifer forests. In: Fensternmaker, L. A. (Ed.): Remote sensing applications for acid deposition. EPA publication CR81400201, 72–85.

    Google Scholar 

  • Vane, G., Green, R., Chrien, T., Unmark, H., Hansen, E. & Porter, W. (1993): The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing Environ., 44, 127–143.

    Article  Google Scholar 

  • Vangronsveld, J., Sterckx, J., Van Assche, F. & Clusters, H. (1995): Rehabilitation studies on an old non-ferrous waste dumping ground. Effects of revegetation and metal immobilization by beringite. J. Geochem. Explor., 52, 221–229.

    Article  Google Scholar 

  • Varshney, P. & Arora, M. (2004): Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data. Springer, Berlin.

    Google Scholar 

  • Vegt, J. W. & Hoffmann, A. (2001): Airborne Laser Scanning Reaches Maturity. Geoinformatics, Sept. 2001, Emmelord, 32–39.

    Google Scholar 

  • Wooding, M. G. (1988): Imaging radar applications in Europe, illustrated experimental results (1978–1987). ESA TM-01, Noordwijk.

    Google Scholar 

  • Zilioli, E., Gomarasca, M. A., & Tomasoni, R. (1992): Application of terrestrial thermography to the detection of waste-disposal sites. Remote Sensing Environ, 40,2, 153–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kühn, F., Hörig, B., Schmidt, D., Bucher, T. (2007). Nonphotographic Imaging from Aircraft and Space-borne Platforms. In: Environmental Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74671-3_5

Download citation

Publish with us

Policies and ethics