Skip to main content

Abstract

Neural disorders or malfunction can result to medical conditions such as epilepsy, Alzheimer’s, chronic pain, spinal cord injury and many others, affecting the quality of life for millions of patients worldwide. Neural damage is often irreparable and when such conditions occur it is often very difficult to assess exactly the way in which neural operation is affected. Such disorders are characterised by interrelated chemical and electrical changes in the brain. At present, it is possible to monitor neural activity through the detection of electrical activity. The instrumentation required for this detection ranges from large clinical recording equipment to implantable devices. Nerve electrodes can be penetrating (needle) or non-penetrating (cuff) and depending on their shape and position they often act as spatial filters to the electrical signals they pick up due to the ionic currents involved in neural conduction. Electrical neural recordings are often severely distorted by interference from other bio-signals and vital information is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Sjöström, M. Häusser: A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons, Neuron 51(2), 227–238 (2006)

    Article  Google Scholar 

  2. http://www.primalbody-primalmind.com/blog/ ?p=366

    Google Scholar 

  3. J. Malmivuo, R. Plonsey: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford Univ. Press, Oxford 1995)

    Book  Google Scholar 

  4. I.F. Triantis, V. Woods, A. Eftekhar, P. Georgiou, T.G. Constandinou, E.M. Drakakis, C. Toumazou: Advances in neural interfacing, IEEE Circuits Syst. Soc. Newsl. 1(1) (2007)

    Google Scholar 

  5. I. F. Triantis, C. Toumazou: Method and Apparatus for Measuring Activity in the Peripheral Nervous System, Patent WO/2008/007065 (2008)

    Google Scholar 

  6. J. Choi, K.P. Koch, W. Poppendieck, M. Lee, T. Doerge, H.S. Shin: A flexible microelectrode for mouse EEG, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (IEEE, 2009) pp. 1600–1603

    Google Scholar 

  7. N. Nakasato, M.F. Levesque, D.S. Barth, C. Baumgartner, R.L. Rogers, W.W. Sutherling: Selective electrical interfaces with the nervous system, Electroencephalogr. Clin. Neurophys. 91(3), 171–178 (1994)

    Article  Google Scholar 

  8. K.P. Koch, A. Ramachandran, W. Poppendieck, D. Feili, K.P. Hoffmann: Polymer-based implantable electrodes: state of the art and future prospects, Proc. Mater. Res. Soc. Spring Meeting (San Francisco, USA 2006)

    Google Scholar 

  9. W.L.C. Rutten: Selective electrical interfaces with the nervous system, Annu. Rev. Biomed. Eng. 4, 407–452 (2002)

    Article  Google Scholar 

  10. D. Fabó, Z. Maglóczky, L. Wittner, A. Pék, L. Eross, S. Czirják, J. Vajda, A. Sólyom, G. Rásonyi, A. Szucs, A. Kelemen, V. Juhos, L. Grand, B. Dombovári, P. Halász, T.F. Freund, E. Halgren, G. Karmos, I. Ulbert: Properties of in vivo interictal spike generation in the human subiculum, Brain 131(Pt 2), 485–499 (2008)

    Article  Google Scholar 

  11. R.R. Harrison, C. Charles: A low-power low-noise CMOS amplifier for neural recording applications, IEEE J. Solid-State Circuits 38, 958–965 (2003)

    Article  Google Scholar 

  12. I.F. Triantis: An Adaptive Amplifier for Cuff Imbalance Correction and Interference Reduction in Nerve Signal Recording. Ph.D. Thesis (University College London, London 2005)

    Google Scholar 

  13. M. Todd: EEGs, EEG processing, and the bispectral index, Anesthesiology 89, 815–817 (1998)

    Article  Google Scholar 

  14. E. Niedermeyer, F.L. da Silva: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. (Lippincott Williams & Wilkins, Philadelphia 2004)

    Google Scholar 

  15. N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann: Neurophysiological investigation of the basis of the fMRI signal, Nature 412, 150–157 (2001)

    Article  Google Scholar 

  16. I.F. Triantis, A. Demosthenous, N. Donaldson: On cuff imbalance and tripolar ENG amplifier configurations, IEEE Trans. Biomed. Eng. 52, 314–320 (2005)

    Article  Google Scholar 

  17. I.F. Triantis, A. Demosthenous: The effect of interference source proximity on cuff imbalance, IEEE Trans. Biomed. Eng. 53, 354–357 (2006)

    Article  Google Scholar 

  18. I.F. Triantis, A. Demosthenous: Tripolar-cuff deviation from ideal model: Assessment by bioelectric field simulations and saline-bath experiments, Med. Eng. Phys. 30(5), 550–562 (2008)

    Article  Google Scholar 

  19. Z.M. Nicolic, B.D. Popovic, R. Stein, Z. Kenwell: Instrumentation for ENG and EMG recordings in FES systems, IEEE Trans. Biomed. Eng. 41, 703–706 (1994)

    Google Scholar 

  20. L. Andreasen, J. Struijk: On the importance of configuration and closure of nerve cuff electrodes for recording, Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol.20 (1998) pp. 3004–3007

    Google Scholar 

  21. J.J. Struijk, M. Thomsen, J.O. Larsen, T. Sinkjaer: Cuff electrodes for long-term recording of natural sensory information, IEEE Eng. Med. Biol. 18, 91–98 (1999)

    Article  Google Scholar 

  22. I.F. Triantis, A. Demosthenous, N. Donaldson: An ENG amplifierfor EMG cancellation and cuff imbalance removal, EPSRC/IEEE Postgraduate Res. Conf. Electron. Photon. Commun. Softw. (PREP’03) (Exeter, UK, 2003) pp. 105–106

    Google Scholar 

  23. J. Rozman, B. Cetina: Electroneurograms recorded from the left vagus nerve of a dog, Proc. 24th IASTED Int. Conf. Biomed. Eng. (Innsbruck 2006) pp. 191–196

    Google Scholar 

  24. I.F. Triantis, A. Demosthenous: A high-performance adaptive ENG amplifier, IEEE BioCAS (Singapore 2004)

    Google Scholar 

  25. I.F. Triantis, A. Demosthenous: A BiCMOS ENG amplifier with high SIR output, IEEE Int. Symp. Circuits Syst. — ISCAS’ 05 (2005)

    Google Scholar 

  26. D.B. Popovic, R.B. Stein, K.L. Jonanovic, D. Rongching, A. Kostov, W.W. Armstrong: Sensory nerve recording for closed-loop control to restore motor functions, IEEE Trans. Biomed. Eng. 40, 1024–1031 (1993)

    Google Scholar 

  27. J. Georgiou: Micropower Electronics for Neural Prosthetics. Ph.D. Thesis (Imperial College London, London 2002)

    Google Scholar 

  28. G. Huberfeld, L. Wittner, S. Clemenceau, M. Baulac, K. Kaila, R. Miles, C. Rivera: Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy, J. Neurosci. 27(37), 9866–9873 (2007)

    Article  Google Scholar 

  29. D.L. Eng, J.D. Kocsis: Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve, J. Neurophysiol. 57, 740–754 (1987)

    Google Scholar 

  30. T.D. Strong, S.M. Martin, R.F. Franklin, R.B. Brown: Integrated electrochemical neurosensors, ISCAS 2006 IEEE Int. Symp. Circuits Syst. (2006), 4 pp.

    Google Scholar 

  31. Y. Qingshan: Ion Sensor for Long Term Use in Complex Medium, Patent WO/2006/014758 (2006)

    Google Scholar 

  32. L. Sudakov-Boreysha, U. Dinnar, Y. Nemirovsky: New ISFET catheters encapsulation techniques for brain pH in-vivo monitoring, 11th IEEE Int. Conf. Electron. Circuits Syst., ICECS 2004 (2004) pp. 424–426

    Google Scholar 

  33. NeuroProbes Project: ftp://ftp.cordis.europa.eu/pub/ist/docs/mnd/neuroprobes_en.pdf

  34. 56.34 Golden Brain Project: ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/openf-18.pdf

  35. A. Radomska, S. Singhal, T. Cass: Protein engineering for biosensors. In: Body Sensor Networks, ed. by G.-Z. Yang (Springer, London 2006) pp. 89–116

    Chapter  Google Scholar 

  36. B.A. Patel, C.A. Anastassiou, D. O’Hare: Biosensor design and interfacing. In: Body Sensor Networks, ed. by G.-Z. Yang (Springer, London 2006) pp. 41–88

    Chapter  Google Scholar 

  37. P. Bergveld: Thirty years of ISFETOLOGY — What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B: Chem. 88, 1–20 (2003)

    Article  Google Scholar 

  38. M.J. Schöning, Poghossian, A.M. Schning: Recent advances in biologically sensitive field-effect transistors (BioFETs), Analyst 127, 1137–1151 (2002)

    Article  Google Scholar 

  39. P.A. Hammond, D. Ali, D.R.S. Cumming: Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process, IEEE Sens. J. 4, 706–712 (2004)

    Article  Google Scholar 

  40. D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz: Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem. 74(12), 2623–2636 (2002)

    Article  Google Scholar 

  41. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz: Micro total analysis systems. 2. Analytical standard operations and applications, Anal. Chem. 74(12), 2637–2652 (2002)

    Article  Google Scholar 

  42. Y. Alifragis, A. Volosirakis, N.A. Chaniotakis, G. Konstantinidis, A. Adikimenakis, A. Georgakilas: Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures, Biosens. Bioelectron. 22, 2796–2801 (2007)

    Article  Google Scholar 

  43. X. Yue, E.M. Drakakis, H. Ye, M. Lim, A. Mantalaris, N. Panoskaltsis, A. Radomska, C. Toumazou, T. Cass: An on-line, multi-parametric, multichannel physicochemical monitoring platform for stem cell culture bioprocessing, Circuits Syst., ISCAS 2007, IEEE Int. Symp. (2007) pp. 1215–1218

    Google Scholar 

  44. M. Lim, H. Ye, N. Panoskaltsis, E.M. Drakakis, X. Yue, A.E.G. Cass, A. Radomska, A. Mantalaris: Intelligent bioprocessing for haemotopoietic cell cultures using monitoring and design of experiments, Biotechnol. Adv. 25, 353–368 (2007)

    Article  Google Scholar 

  45. A. Radomska, R. Koncki, K. Pyrzynska, S. Glab: Bioanalytical system for control of hemodialysis treatment based on potentiometric biosensors for urea and creatinine, Anal. Chim. Acta 523,193–200 (2004)

    Article  Google Scholar 

  46. A. Radomska, E. Bodenszac, S. Glab, R. Koncki: Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis, Talanta 64,603–608 (2004)

    Google Scholar 

  47. P. Georgiou, I.F. Triantis, T. Constandinou, C. Toumazou: Spiking Chemical Sensor (SCS): A new platform for neuro-chemical sensing, 3rd Int. IEEE/EMBS CNE (Hawaii 2007) pp. 126–129

    Google Scholar 

  48. L. Shepherd, P. Georgiou, C. Toumazou: A novel voltage-clamped CMOS ISFET sensor interface, IS- CAS 2007, IEEE Int. Symp. Circuits Syst. 2007(2007) pp.3331–3334

    Google Scholar 

  49. L.M. Shepherd, C. Toumazou: A biochemical translinear principle with weak inversion ISFETs, IEEE Transact. Circuits Syst. I: Fundamental Theory and Applications, Regular Papers, Vol. 52 (2005) pp. 2614–2619

    Google Scholar 

  50. B. Premanode, W.P. Chan, C. Toumazou: Ultra-low power precision ISFET readout using global current feedback, Electron. Lett. 42, 1264–1265(2006)

    Article  Google Scholar 

  51. L. Shepherd, C. Toumazou: Towards an implantable ultra-low power biochemical signal processor for blood and tissue monitoring, ISCAS 2005, IEEE Int. Symp. Circuits Syst., Vol.5 (2005) pp. 5226–5229

    Google Scholar 

  52. L. Shepherd, T.G. Constandinou, C. Toumazou: Towards ultra-low power bio-inspired processing. In: Body Sensor Networks, ed. by G.-Z. Yang (Springer, London 2006) pp. 219–238

    Chapter  Google Scholar 

  53. P. Georgiou, T.G. Constandinou, C. Toumazou: Lowpower spiking chemical pixel sensor, Electron. Lett. 42, 1331–1332 (2006)

    Article  Google Scholar 

  54. B. Sonnleitner: Instrumentation of Biotechnological Processes. In: Bioanalysis and Biosensors for Bioprocess Monitoring, Vol. 66, ed. by B. Sonnleitner (Springer, Berlin Heidelberg 2000)

    Google Scholar 

  55. P. Georgiou, C. Toumazou: An adaptive ISFET chemical imager chip, ISCAS 2008, IEEE Int. Symp. Circuits Syst. (2008) pp. 2078–2081

    Google Scholar 

  56. J. Bausells, J. Carrabina, A. Errachid, A. Merlos: Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sens. Actuators B: Chem. 57, 56–62 (1999)

    Article  Google Scholar 

  57. S. Martinoia, G. Massobrio, L. Lorenzelli: Modeling ISFET microsensor and ISFET-based microsystems: a review, Sens. Actuators 105, 14–27 (2005)

    Google Scholar 

  58. B. Razavi: Design of Analog CMOS Integrated Circuits (McGraw-Hill, Boston 2000)

    Google Scholar 

  59. P. Georgiou: Chemical Bionics — A Novel Design Approach Using Ion Sensitive Field Effect Transistors (Imperial College University of London, London 2008)

    Google Scholar 

  60. S.F. Traynelis, R. Dingledine: Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures, J. Neurophysiol. 61, 927–938 (1989)

    Google Scholar 

  61. A. Radomska, S. Singhal, H. Ye, M. Lim, A. Mantalaris, X. Yue, E.M. Drakakis, A.E.G. Cass: Biocompatible ion-selective electrode for monitoring metabolic activity during the growth and cultivation of human cells, Biosens. Bioelectron. 24, 435–441 (2008)

    Article  Google Scholar 

  62. R.B.M. Schasfoort, S. Schlautmann, L. Hendrikse, A. van den Berg: Field-effect flow control for microfabricated fluidic networks, Science 286, 942–945 (1999)

    Article  Google Scholar 

  63. S. Sharma, K. Buchholz, S.M. Luber, U. Rant, M. Tornow, G. Abstreiter: Silicon-on-insulator microfluidic device with monolithic sensor integration for μTAS applications, J. Microelectromech. Syst. 15(2), 308–313(2006)

    Article  Google Scholar 

  64. D.S. Kim, J.E. Park, J.K. Shin, P.K. Kim, G. Lim, S. Shoji: An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes, Sens. Actuators B: Chem. 117(2), 488–494 (2006)

    Article  Google Scholar 

  65. P. Truman, P. Uhlmann, M. Stamm: Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices, Lab Chip 6(9), 1220–1228 (2006)

    Article  Google Scholar 

  66. B.C. Jacquot, C. Lee, Y.N. Shen, E.C. Kan: Time-Resolved Charge Transport Sensing by Chemoreceptive Neuron MOS Transistors (C?MOS) With Microfluidic Channels, IEEE Sensors 7(10), 1429–1434 (2007)

    Article  Google Scholar 

  67. T. Masadome, K. Yada, S.I. Wakida: Microfluidic polymer chip integrated with an ISFET detector for cationic surfactant assay in dental rinses, Anal. Sci. 22(8), 1065–1069 (2006)

    Article  Google Scholar 

  68. M.J. Milgrew, M.O. Riehle, D.R.S. Cumming: A large transistor-based sensor array chip for direct extracellular imaging, Sens. Actuators B: Chem. 111, 347–353 (2005)

    Article  Google Scholar 

  69. S. Sharma, A. Radomska-Botelho Moniz, I. Triantis, K. Michelakis, J. Trzebinski, A. Azarbadegan, B. Field, C. Toumazou, I. Eames, A. Cass: An integrated silicon sensor with microfluidic chip for monitoring potassium and pH, Microfluid. Nanofluid. 10(5), 1119–1125 (2011)

    Article  Google Scholar 

  70. N.J. Abbott, G. Mitchell, K.J. Ward, F. Abdullah, I.C.H. Smith: An electrophysiological method for measuringthe potassium permeability of the nerve perineurium, Brain Res. 776, 204–213 (1997)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Triantis, I.F. et al. (2011). Ionic Neural Sensing. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics