Skip to main content

Rehabilitation and Therapeutic Robotics

  • Chapter
Springer Handbook of Medical Technology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The successful introduction of robotic technologies in the rehabilitation arena critically depends on the possibility to design machines able to operate in symbiosis with patients, i. e., adapting the level of assistance to their residual abilities. Safety, easiness of use, and flexibility are key factors for these systems, which typically operate in continuous physical contact with the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.C. Cramer: Brain repair after stroke, N. Engl. J. Med. 362, 1827–1829 (2010)

    Article  Google Scholar 

  2. E. Guglielmelli, M.J. Johnson, T. Shibata: Guest editorial, special issue on rehabilitation robotics, IEEE Trans. Robot. 25, 477–480 (2009)

    Article  Google Scholar 

  3. G. Kempermann, H. Van Praag, F.H. Gage: Activity-dependent regulation of neuronal plasticity and self repair, Prog. Brain Res. 127, 35–48 (2000)

    Google Scholar 

  4. T.A. Jones, C.J. Chu, L.A. Grande, A.D. Gregory: Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats, J. Neurosci. 19, 10153–10163(1999)

    Google Scholar 

  5. R.J. Nudo, K.M. Friel: Cortical plasticity after stroke: Implications for rehabilitation, Rev. Neurol. 155, 713–717 (1999)

    Google Scholar 

  6. F. Gomez-Pinilla, Z. Ying, R.R. Roy, R. Molteni, V.R. Edgerton: Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity, J. Neurophysiol. 88, 2187–2195 (2002)

    Article  Google Scholar 

  7. J. Mehrholz, T. Platz, J. Kugler, M. Pohl: Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke, The Cochrane Libr. 4, 1–44 (2009)

    Google Scholar 

  8. A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, C.T. Bever Jr., D.M. Bravata, P.W. Duncan, B.H. Corn, A.D. Maffucci, S.E. Nadeau, S.S. Conroy, J.M. Powell, G.D. Huang, P. Peduzzi: Robot-assisted therapy for long-term upper-limb impairment after stroke, N. Engl. J. Med. 362, 1772–1783 (2010)

    Article  Google Scholar 

  9. D. Reinkensmeyer, N. Hogan, H.I. Krebs, S.L. Lehman, P.S. Lum: Rehabilitators, robots and guides: New tools for neurological rehabilitation. In: Biomechanics and Neural Control of Posture and Movement, ed. by J. Winters, P.E. Crago (Springer, Berlin Heidelberg 2000) pp. 516–534

    Chapter  Google Scholar 

  10. N. Hogan, H.I. Krebs, B.Z Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe: Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery, J. Rehabil. Res. Dev. 43, 605–618 (2006)

    Article  Google Scholar 

  11. E. Gallotta, G. Magrone, A. Romanelli, M. Milazzo, L. Zollo, D. Formica, E. Guglielmelli, S. Sterzi: Neurorehabilitation of the upper limb using robotic systems, J. Rehabil. Med. 47, 276 (2008), Suppl.

    Google Scholar 

  12. D. Reinkensmeyer, J.L. Emken, S.C. Cramer: Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  13. B. Siciliano, O. Khatib (Eds.): Springer Handbook of Robotics (Springer, Berlin Heidelberg 2008), Part G, Chaps. 56–64

    MATH  Google Scholar 

  14. H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan: Rehabilitation robotics: Performance-based progressive robot-assisted therapy, Auton. Robot. 15, 7–20 (2003)

    Article  Google Scholar 

  15. L. Zollo, M. Passalacqua, D. Formica, E. Guglielmelli: Performance Analysis of Adaptive Interaction Control Laws for Rehabilitation Robotics, 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatron. (2008), Scottsdale, AZ, USA, 2008

    Google Scholar 

  16. B. Siciliano, L. Villani: Robot Force Control (Kluwer, Boston 1999)

    Book  MATH  Google Scholar 

  17. D.M. Gorinevsky, A.M. Formalsky, A.Y. Schneider: Force Control of Robotics Systems (CRC Press, Boca Raton 1997)

    MATH  Google Scholar 

  18. L. Zollo, B. Siciliano, C. Laschi, G. Teti, P. Dario: An experimental study on compliance control for a redundant personal robot arm, Robot. Auton. Syst. 44, 101–129 (2003)

    Article  Google Scholar 

  19. D. Formica, L. Zollo, E. Guglielmelli: Torque-dependent compliance control in the joint space of an operational robotic machine for motor therapy, ASME J. Dyn. Syst. Meas. Control 128, 152–158 (2006)

    Article  Google Scholar 

  20. L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments, ASME J. Dyn. Syst. Meas. Control 127, 321–328 (2005)

    Article  Google Scholar 

  21. D.J. Reinkensmeyer, L.E. Kahn, M. Averbuch, A. McKenna-Cole, B.D. Schmit, W.Z. Rymer: Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide, J. Rehabil. Res. Dev. 37, 653–662 (2000)

    Google Scholar 

  22. L.E. Kahn, M. Averbuch, W.Z. Rymer, D.J. Reinkensmeyer: Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke. In: Integration of Assistive Technology in the Information Age, ed. byM. Mokhtari (IOS Press, Amsterdam 2001) pp. 39–44

    Google Scholar 

  23. S. Micera, M.C. Carrozza, E. Guglielmelli, G. Cappiello, F. Zaccone, C. Freschi, R. Colombo, A. Mazzone, C. Delconte, F. Pisano, G. Minuco, P. Dario: A simple robotic system for neurorehabilitation, Auton. Robots 19, 271–284 (2005)

    Article  Google Scholar 

  24. C.G. Burgar, P.S. Lum, P.C. Shor, M. Van der Loos: Development of robots for rehabilitation therapy: The palo alto VA/stanford experience, J. Rehabil. Res. Dev. 37, 663–673 (2000)

    Google Scholar 

  25. P. Lum, D.J. Reinkensmeyer, R. Mahoney, W.Z. Rymer, C. Burgar: Robotic devices for movement therapy after stroke: Current status and challenges to clinical acceptance, Top. Stroke Rehabil. 8, 40–53 (2002)

    Article  Google Scholar 

  26. P.S. Lum, E. Taub, D. Schwandt, M. Postman, P. Hardin, G. Uswatte: Automated constraint-induced therapy extension (AutoCITE) for movement deficits after stroke, J. Rehabil. Res. Dev. 41, 249–258 (2004)

    Article  Google Scholar 

  27. H.I. Krebs, N. Hogan, M.L. Aisen, B.T. Volpe: Robotaided neurorehabilitation, IEEE Trans. Rehabil. Eng. 6, 75–87 (1998)

    Article  Google Scholar 

  28. B.T. Volpe, H.I. Krebs, N. Hogan, L. Edelstein, C. Diels, M. Aisen: A novel approach to stroke rehabilitation: Robot-aided sensorimotor stimulation, Neurology 54, 1938–1944 (2000)

    Article  Google Scholar 

  29. K. Kiguchi, K. Iwami, M. Yasuda, K. Watanabe: An exoskeletal robot for human shoulder joint motion assist, IEEE/ASME Trans. Mechatron. 8, 125–135 (2003)

    Article  Google Scholar 

  30. G.B. Prange, M.J.A. Jannink, C.G.M. Groothuis-Oudshoorn, H.J. Hermens, M.J. IJzerman: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke, J. Rehabil. Res. Dev. 43, 171–184 (2006)

    Article  Google Scholar 

  31. J. Furusho, K. Koyanagi, Y. Imada, Y. Fujii, K. Nakanishi, K. Domen, K. Miyakoshi, U. Ryu, S. Takenaka, A. Inoue: A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing, Proc. 2005 Int. Conf. Rehabil. Robot. (2005), Chicago, Illinois, pp. 53–56, 2005

    Google Scholar 

  32. M. Mihelj, T. Nef, R. Riener: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots, Adv. Robot. 21, 843–867 (2007)

    Article  Google Scholar 

  33. S.J. Ball, I.E. Brown, S.H. Scott: A planar 3DOF robotic exoskeleton for rehabilitation and assessment, 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2007), Lyon, France, pp. 4024–4027, 2007

    Google Scholar 

  34. D.A. Lawrence: Impedance control stability properties in common implementations, Proc.1988 Int. Conf. Robot. Autom. (1988) pp. 1185–1191, Philadelphia, PA, USA, 1988

    Google Scholar 

  35. C.S. Cai, B. Roth: On the spatial motion of a rigid body with point contact, Proc. 1987 Int. Conf. Robot. Autom. (1987) pp. 686–695

    Google Scholar 

  36. A. Sharon, N. Hogan, D.E. Hardt: The macro/micro manipulator: An improved architecture for robot control, Robot. Comput.-Integr. Manuf. 10, 209–222 (1993)

    Article  Google Scholar 

  37. T.H. Massie, J.K. Salisbury: The PHANTOM Haptic Interface: A Device for Probing Virtual Objects, Proc. ASME Winter Annu. Meet. Symp. Haptic Interfaces Virtual Environ. Teleoper. Syst. (1994), Chicago, IL, 1994

    Google Scholar 

  38. N. Hogan, H.I Krebs, A. Sharon, J. Charnnarong: Interactive robotictherapist, Patent 5466213 (1995), Massachusetts Inst. Technol., Cambridge

    Google Scholar 

  39. H.I. Krebs, B.T. Volpe, D. Williams, J. Celestino, S.K. Charles, D. Lynch, N. Hogan: Robot-aided neurorehabilitation: A robot for wrist rehabilitation, IEEE Trans. Neural Syst. Rehabil. Eng. 15, 327–335 (2007)

    Article  Google Scholar 

  40. C.R. Carignan, H.I. Krebs: Telerehabilitation robotics: Bright lights, big future?, J. Rehabil. Res. Dev. 43, 695–710 (2006)

    Article  Google Scholar 

  41. H. Kazerooni, P.K. Houpt, T.B. Shecridan: Robust compliant motion for manipulators. Part 1. The fundamental concepts of compliant motion. Part 2. Design methods, IEEE J. Robot. Autom. 2, 83105 (1986)

    Google Scholar 

  42. N. Hogan: Impedance control: An approach to manipulation, Part I–III, ASME J. Dyn. Syst. Meas. Control107, 1–24 (1985)

    Article  MATH  Google Scholar 

  43. H. Asada: Dynamic analysis and design of robot manipulators using inertia ellipsoids, IEEE Int. Conf. Robot., Atlanta 1984 pp. 94–102, Atlanta, 1984

    Google Scholar 

  44. O. Khatib: Inertial properties in robotic manipulation: An object-level framework, Int. J. Robot. Res. 14, 19–36 (1995)

    Article  Google Scholar 

  45. D. Accoto, L. Zollo, E. Guglielmelli: Design of a planar robotic machine for tele-rehabilitation of elderly patient, Gerontechnology 7, 65 (2008), (doi:10.4017/gt.2008.07.02.002.00)

    Article  Google Scholar 

  46. D. Accoto, F. Torchiani, E. Guglielmelli, L. Zollo, E. Cecchini, M. Orsini: Dispositivo per la terapia motoria robot-mediata dell’arto superiore, Patent RM2008A000242 (2008), filed on May 6, 2008

    Google Scholar 

  47. B.R. Brewer, S.K. McDowell, L.C. Worthen-Chaudhari: Poststroke upper extremity rehabilitation: A review of robotic systems and clinical results, Top. Stroke Rehabil. 14, 22–44 (2007)

    Article  Google Scholar 

  48. C.D. Takahashi, L. Der-Yeghiaian, V. Le, R.R. Motiwala, S.C. Cramer: Robot-based hand motor therapy after stroke, Brain 131, 425–437 (2008)

    Article  Google Scholar 

  49. M.F. Levin, J.A. Kleim, S.L. Wolf: What do motor “recovery” and “compensation” mean in patients following stroke?, Neurorehabil. Neural Repair23, 313–319 (2009)

    Google Scholar 

  50. B. Rohrer, S. Fasoli, H.I. Krebs, R. Hughes, B. Volpe, W.R. Frontera, J. Stein, N. Hogan: Movement smoothness changes during stroke recovery, J. Neurosci. 22, 8297–8304 (2002)

    Google Scholar 

  51. C. Bosecker, L. Dipietro, B. Volpe, H.I. Krebs: Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke, Neurorehabil. Neural Repair 24, 62–69 (2010), (DOI:10.1177/1545968309343214)

    Article  Google Scholar 

  52. R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M.C. Carrozza, P. Dario, G. Minuco: Assessing mechanisms of recovery during robotaided neurorehabilitation of the upper limb, Neurorehabil. Neural Repair 22, 50–63 (2008)

    Google Scholar 

  53. L. Zollo, E. Galotta, E. Guglielmelli, S. Sterzi: Robotic technologies and rehabilitation: New tools for upper-limb therapy and assessment in chronic stroke, Eur. J. Phys. Rehabil. Med. 47(2), 223–236 (2011)

    Google Scholar 

  54. F. Gandolfo, F.A. Mussa-Ivaldi, E. Bizzi: Motor learning by field approximation, Proc. Natl. Acad. Sci. USA 93, 3843–3846 (1996)

    Article  Google Scholar 

  55. M.A. Smith, J. Brandt, R. Shadmehr: Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control, Nature 403, 544–549 (2000)

    Article  Google Scholar 

  56. M.A. Smith, R. Shadmehr: Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration, J. Neurophysiol. 93, 2809–2821 (2005)

    Article  Google Scholar 

  57. T. Flash, N. Hogan: The coordination of arm movements: An experimentally confirmed mathematical model, J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  58. J. Cohen: Statistical Power Analysis for the Behavioral Sciences,2nd edn. (Lawrence Erlbaum Associates, Berlin Heidelberg 1988)

    MATH  Google Scholar 

  59. D.G. Kamper, A.N. McKenna-Cole, L.E. Kahn, D.J. Reinkensmeyer: Alterations in reaching after stroke and their relation to movement direction and impairment severity, Arch. Phys. Med. Rehabil. 83, 702–707 (2002)

    Article  Google Scholar 

  60. M.C. Cirstea, M.F. Levin: Compensatory strategies for reaching in stroke, Brain 123, 940–953 (2000)

    Article  Google Scholar 

  61. M.L. Latash, J.G. Anson: What are “normal” movements in atypical populations?, Behav. Brain Sci. 19, 55–106 (1996)

    Article  Google Scholar 

  62. B. Steenbergen, E. Van Thiel, W. Hulstijn, R.G.J. Meulenbroek: The coordination of reaching and grasping in spastic hemiparesis, Hum. Mov. Sci. 19, 75–105 (2000)

    Article  Google Scholar 

  63. C.D. Takahashi, L. Der-Yeghiaian, V.H. Le, R.R. Motiwala, S.C. Cramer: Robot-based hand motor therapy after stroke, Brain 131, 425–437 (2008)

    Article  Google Scholar 

  64. M. Tombini, F. Zappasodi, L. Zollo, G. Pellegrino, G. Cavallo, F. Tecchio, E. Guglielmelli, P.M. Rossini: Brain activity preceding a 2D manual catchingtask, Neuroimage 47(4), 1735–1746 (2009)

    Article  Google Scholar 

  65. T.W. Boonstra, H.E. Clairbois, A. Daffertshofer, J. Verbunt, B.W. van Dijk, P.J. Beek: “MEG-compatible force sensor, J. Neurosci. Methods 144, 193–196 (2005)

    Article  Google Scholar 

  66. R. Gassert, R. Moser, E. Burdet, H. Bleuler: MRI/fMRIcompatible robotic system with force feedback for interaction with human motion, IEEE/ASME Trans. Mechatron. 11, 216–224 (2006)

    Article  Google Scholar 

  67. K. Chinzei, R. Gassert, E. Burdet: Workshop on MRI/fMRI compatible robot technology — A critical tool for neuro science and image guided intervention, IEEE Int. Conf. Robot. Autom. (2006), Orlando

    Google Scholar 

  68. A. Krieger, R.C Susil, C. Menard, J.A. Coleman, G. Fichtinger, E. Atalar, L.L. Whitcomb: Design of a novel MRI compatible manipulator for image guided prostate intervention, IEEE Trans. Biomed. Eng. 52, 306–313 (2005)

    Article  Google Scholar 

  69. A. Hribar, M. Munih: Development and testing of fMRI-compatible haptic interface, Robotica 28, 259–265 (2010)

    Article  Google Scholar 

  70. N. Yu, C. Hollnagel, A. Blickenstorfer, S.S. Kollias, R. Riener: Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation, IEEE/ASME Trans. Mechatron. 13, 268–277 (2008)

    Article  Google Scholar 

  71. S.E. Mendelowitz: Design of an MRI compatible robot for wrist rehabilitation. Ph.D. Thesis (MIT, Cambridge 2005)

    Google Scholar 

  72. D. Mintzopoulos, A. Khanicheh, A.A. Konstas, L.G. Astrakas, A.B. Singhal, M.A. Moskowitz, B.R. Rosen, A.A. Tzika: Functional MRI of rehabilitation in chronic stroke patients using novel MR-compatible hand robots, Open Neuroimaging J. 2, 94–101 (2008)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zollo, L., Accoto, D., Sterzi, S., Guglielmelli, E. (2011). Rehabilitation and Therapeutic Robotics. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics