Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 9394 Accesses

Abstract

This chapter describes passive as well as active thermal methods and their applications in medicine. To keep the body temperature at a constant level, excess heat is released by evaporation, convection, conduction, and radiation. Evaporation of sweat is the most obvious mechanism. Its effectiveness depends upon the ambient temperature and relative humidity. Convective cooling is most noticeable when standing in front of a fan. Conduction occurs when physically touching an object. Conductive cooling depends on the temperature difference between the object temperature and the skin temperature. Feverish patients are sometimes immersed in cool water. Radiative cooling is a function of the skin temperature and the environmental temperature. It is experienced when placing your hand in a freezer. An infrared (thermal) imaging system is calibrated to provide surface temperature. Local variations in skin temperature is a function the above quantities as well as metabolism (cancers and exercise), inflammation, circulatory disturbances, and skin condition (scabs, moles, and hair).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Furukawa: Biological Imaging and Sensing (Springer, Berlin, Heidelberg 2004)

    Book  Google Scholar 

  2. R.P. Madding, G.L. Orlove, H. Kaplan:Twenty-five years of Thermosense: A historical and technological retrospective, SPIE Proc. 5073, 1–16 (2003)

    Google Scholar 

  3. G.C. Holst: Common Sense Approach to Thermal Imaging (JCD, Winter Park 2000)

    Google Scholar 

  4. G.C. Holst: Testing and Evaluating of Infrared Imaging Systems, 3rd edn. (JCD, Winter Park 2008)

    Google Scholar 

  5. N. Schuster, V.G. Kolobrodov: Infrarotthermographie (Wiley-VCH, Weinheim 2000)

    Google Scholar 

  6. O. Dössel: Bildgebende Verfahren in der Medizin (Springer, Berlin, Heidelberg 2000), in German

    Book  MATH  Google Scholar 

  7. T.M. Buzug, S. Schumann, L. Pfaffmann, U. Reinhold, J. Ruhlmann: Skin-tumour classification with functional infrared imaging, Proc. 8th IASTED Conf. Signal and Image Processing (SIP 2006) (Acta, Honolulu 2006) pp. 313–322

    Google Scholar 

  8. A. Merla, L. Di Donato, G.L. Romani: Infrared functional imaging: analysis of skin temperature during exercise, Proc. 24th Annu. Int. Conf. IEEE EMBS (IEEE-EMBS, Piscataway 2002) pp. 1141–1142

    Google Scholar 

  9. W. Stolz, D. Hölzel, A. Riemann, W. Abmayr, C. Przetak, P. Bilek, M. Landthaler, O. Braun-Falco: Multivariante analysis of criteria given by dermatoscopy for the recognition of melanocytic lesions, 15th Meet. Am. Acad. Dermatol, Dallas, Book of Abstracts (1991) pp. 7–12

    Google Scholar 

  10. R.A. Fiorini, G. Dacquino, G. Laguteta: A new melanoma diagnosis active support system, Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco (IEEE-EMBS, Piscataway 2004) pp. 3206–3209

    Google Scholar 

  11. G. Zouridakis, M. Doshi, N. Mullani: Early diagnosis of skin cancer based on segmentation and measurement of vascularization and pigmentation in Nevoscope images, Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco (IEEE-EMBS, Piscataway 2004) pp. 1593–1596

    Google Scholar 

  12. T.M. Buzug, S. Schumann, L. Pfaffmann, U. Reinhold, J. Ruhlmann: Functional infrared imaging for skin-cancer screening, Proc. 28th Annu. Int. Conf. IEEE EMBS, New York (IEEE-EMBS, Piscataway 2006) pp. 2766–2769

    Google Scholar 

  13. R. Maleszka, M. Rozewicka, M. Parafiniuk, A. Kempinska, D. Mikulska: Trial of thermographic investigations application in patient with psotriatic arthritis, Dermatol. Klin. 5, 11–15 (2003)

    Google Scholar 

  14. A. Zalewska, B. Wiecek, A. Sysa-Jedrzejowska, G. Gralewicz, G. Owczarek: Qualitative thermograhic analysis of psoriatic skin lesions, Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco (I EE-EMBS, Piscataway 2004) pp. 1192–1195

    Google Scholar 

  15. H.H. Pennes: Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1(2), 93–122 (1948)

    Google Scholar 

  16. T.R. Gowrishankar, D.A. Stewart, G.T. Martin, J.C. Weaver: Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion, BioMed. Eng. OnLine 3, 42 (2004)

    Article  Google Scholar 

  17. A.Z. Nowakowski: Limitations of active dynamic thermography in medical diagnostics, Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco (IEEE-EMBS, Piscataway 2004), 2004) pp. 1179

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holst, G.C., Buzug, T.M. (2011). Medical Infrared Imaging. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics