Skip to main content

Functional Force Assessment of Skeletal Muscles

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Measurements of muscle function and strength are essential components of many clinical neurological or physical exams, and they are important for monitoring physiological function in various animal research studies. Evaluation of muscle strength is necessary for differential diagnosis, to determine the presence of disability, to plan potential treatments, and/or to track the effectiveness of treatments. As outcomes-based medical practice becomes more prevalent, the need for quantitative outcomes assessment of muscle strength becomes even more critical. Several assessment techniques and tools are currently available, but most require a cognitively cooperative subject. Manual muscle testing is the most widely used method to assess muscle function, however its reliability and accuracy are variable. When greater accuracy is needed, instruments that provide precise readouts of resistive forces can be employed, for example, hand dynamometers, pinch grips, and computer-controlled dynamometers. Stimulated muscle force assessment is an alternative and versatile approach for quantitative involuntary muscle torque.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Physical Therapy Association: Guide to Physical Therapy Practice (American Physical Therapy Association, Virginia 1997)

    Google Scholar 

  2. H.M. Clarkson: Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength (Lippincott Williams Wilkins, Philadelphia 2000)

    Google Scholar 

  3. F.E. Zajac: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  4. J.G. Quinlan, P.A. Iaizzo, G.A. Gronert, E.H. Lambert: Ankle dorsiflexor twitch properties in malignant hyperthermia, Muscle Nerve 12, 119–125 (1989)

    Article  Google Scholar 

  5. T.J. Brass, M.K. Loushin, J.W. Day, P.A. Iaizzo: An improved method for muscle force assessment in neuromuscular disease, J. Med. Eng. Technol. 20, 67–74 (1996)

    Article  Google Scholar 

  6. D.A. Winter: Biomechanics of Human Movement (Wiley, New York 1979)

    Google Scholar 

  7. G.A. Yamaguchi: A survey of human musculotendon actuator parameters. In: Multiple Muscle Systems: Biomechanics and Movement Organization, ed. by J.M. Winters, S. Woo (Springer, New York 1990)

    Google Scholar 

  8. J.M. Winters, S. Woo (Eds.): Multiple Muscle Systems: Biomechanics and Movement Organization (Springer, New York 1990)

    Google Scholar 

  9. M. Neistadt, E. Crepeau: Willard and Spackman’s Occupational Therapy (Lippincott Williams Wilkins, Philadelphia 1998)

    Google Scholar 

  10. L. Daniels, C. Worthingham: Muscle Testing: Techniques of Manual Examination (S unders, Philadelphia 1995)

    Google Scholar 

  11. D.M. Iddings, L.K. Smith, W.A. Spencer: Muscle testing. 2. Reliability in clinical use, Phys. Ther. Rev. 41, 249–256 (1961)

    Google Scholar 

  12. S.M. Schwartz, M.E. Cohen, G.J. Herbison, A. Shah: Relationship between two measures of upper extremity strength: Manual muscle test compared to hand-held myometry, Arch. Phys. Med. Rehabil. 73, 1063–1068 (1992)

    Google Scholar 

  13. R.W. Bohannon: Manual muscletestscoresand dynamometer test scores of knee extension strength, Arch. Phys. Med. Rehabil. 67, 390–392 (1986)

    Google Scholar 

  14. C. Knepler, R.W. Bohannon: Subjectivity of forces associated with manual-muscle test grades of 3+, 4−, and 4, Percept. Mot. Skills 87, 1123–1128 (1998)

    Article  Google Scholar 

  15. R.W. Bohannon: Test-retest reliability of handheld dynamometry during a single session of strength assessment, Phys. Ther. 66, 206–209 (1986)

    Google Scholar 

  16. L. Amundsen: Muscle Strength Testing: Instrumented and Noninstrumented Systems (Churchill Livingstone, New York 1990)

    Google Scholar 

  17. R.W. Bohannon, A.W. Andrews: Interrater reliability of hand-held dynamometry, Phys. Ther. 67, 931–933 (1987)

    Google Scholar 

  18. M. Horvat, R. Croce, G. Roswal: Intratester reliability of the Nicholas Manual Muscle Tester on individuals with intellectual disabilities by a tester having minimal experience, Arch. Phys. Med. Rehabil. 75, 808–811 (1994)

    Google Scholar 

  19. J. Dunn, M. Iversen: Interrater reliability of knee muscle forces obtained by hand-held dynamometer from elderly subjects with degenerative back pain, J. Geriatr. Phys. Ther. 26, 23–29 (2003)

    Article  Google Scholar 

  20. P. Click Fenter, J.W. Bellew, T. Pitts, R. Kay: A comparison of 3 hand-held dynamometers used to measure hip abduction strength, J. Strength Cond. Res. 17, 531–535 (2003)

    Article  Google Scholar 

  21. N. Massy-Westropp, W. Rankin, M. Ahearn, J. Krishnan, T.C. Hearn: Measuring grip strength in normal adults: Reference ranges and a comparison of electronic and hydraulic instruments, J. Hand Surg. [Am.] 29, 514–519 (2004)

    Article  Google Scholar 

  22. J.M. Cabri: Isokinetic strength aspects of human joints and muscles, Crit. Rev. Biomed. Eng. 19, 231–259 (1991)

    Google Scholar 

  23. W.K. Durfee, K.I. Palmer: Estimation of forceactivation, force-length, and force-velocity properties in isolated, electrically stimulated muscle, IEEE Trans. Biomed. Eng. 41, 205–216 (1994)

    Article  Google Scholar 

  24. W.K. Durfee, K.E. MacLean: Methods for estimating isometric recruitment curves of electrically stimulated muscle, IEEE Trans. Biomed. Eng. 36, 654–667 (1989)

    Google Scholar 

  25. W.K. Durfee: Model identification in neural prosthesis systems. In: Neural Prostheses: Replacing Motor Function After Disease or Disability, ed. by R.B. Stein, P.H. Peckham, D. Popovic (Oxford Univ. Press, New York 1992)

    Google Scholar 

  26. F. Zajac, J.M. Winters: Modeling musculoskeletal movement systems. In: Multiple Muscle Systems: Biomechanics and Movement Organizations, ed. by J.M. Winters, S. Woo (Springer, New York 1990)

    Google Scholar 

  27. G. Zahalak: An overview of muscle modeling. In: Neural Prostheses: Replacing Motor Function After Disease or Disability, ed. by R.B. Stein, P.H. Peckham, D. Popovic (Oxford Univ. Press, New York 1992)

    Google Scholar 

  28. P. Crago: Creating neuromusculoskeletal models. In: Biomechanics and Neural Control of Posture and Movement, ed. by J.M. Winters, P. Crago (Springer, New York 2000)

    Google Scholar 

  29. R. Kearney, R. Kirsch: System identification and neuromuscular modeling. In: Biomechanics and Neural Control of Posture and Movement, ed. by J.M Winters, P. Crago (Springer, New York 2000)

    Google Scholar 

  30. A.V. Hill: The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. [Biol.] 126, 136–195 (1938)

    Article  Google Scholar 

  31. J.M. Winters: Hill-based muscle models: A systems engineering perspective. In: Multiple Muscle Systems: Biomechanics and Movement Organization, ed. by J.M. Winters, S. Woo (Springer, New York 1990)

    Chapter  Google Scholar 

  32. R. Merletti, P. Parker: Electromyography: Physiology, Engineering, and Noninvasive Applications (Wiley, Hoboken 2004)

    Book  Google Scholar 

  33. J.V. Basmajian, C.J. DeLuca: Muscles Alive: Their Function Revealed by Electromyography (Williams Wilkins, Baltimore 1985)

    Google Scholar 

  34. D.C. Preston, B.E. Shapiro: Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations (Butterworth-Heinemann, Boston 1998)

    Google Scholar 

  35. J. Kimura: Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice (O ford Univ. Press, New York 2001)

    Google Scholar 

  36. S.M. Gnatz: EMG Basics (Greenleaf, Austin 2001)

    Google Scholar 

  37. M.J. Fillyaw, R. Tandan, W.G. Bradley: Serial evaluation of neuromuscular function in management of chronic inflammatory demyelinating polyneuropathy, Phys. Ther. 67, 1708-1711 (1987)

    Google Scholar 

  38. J.W. Day, C. Sakamoto, G.J. Parry, F. Lehmann-Horn, P.A. Iaizzo: Force assessment in periodic paralysis after electrical muscle stimulation, Mayo Clin. Proc. 77, 232–240 (2002)

    Article  Google Scholar 

  39. A.C. Jackson, J.J. Gilbert, G.B. Young, C.F. Bolton: The encephalopathy of sepsis, Can. J. Neurol. Sci. 12, 303–307 (1985)

    Google Scholar 

  40. H.F. Ginz, F. Zorzato, P.A. Iaizzo, A. Urwyler: Effect of three anaesthetic techniques on isometric skeletal muscle strength, Br. J. Anaesth. 92, 367–372 (2004)

    Article  Google Scholar 

  41. J. Hong, P.A. Iaizzo: Force assessment of the stimulated arm flexors: quantification of contractile properties, J. Med. Eng. Technol. 26, 28–35 (2002)

    Article  Google Scholar 

  42. J. Hong, J.H. Falkenberg, P.A. Iaizzo: Stimulated muscle force assessment of the sternocleidomastoid muscle in humans, J. Med. Eng. Technol. 29, 82–89 (2005)

    Article  Google Scholar 

  43. J.G. Quinlan, P.A. Iaizzo, G.A. Gronert, E.H. Lambert: Twitch responses in a myopathy with impaired relaxation but no myotonia, Muscle Nerve 13, 326–329 (1990)

    Article  Google Scholar 

  44. J.G. Quinlan, D.J. Wedel, P.A. Iaizzo: Multiple-pulse stimulation and dantrolene in malignant hyperthermia, Muscle Nerve 13, 904–908 (1990)

    Article  Google Scholar 

  45. W.J. Schulte-Mattler, T. Müller, M. Deschauer, F.N. Gellerich, P.A. Iaizzo, S. Zierz: Increased metabolic muscle fatigue is caused by some but not all mitochondrial mutations, Arch. Neurol. 60, 50–58 (2003)

    Article  Google Scholar 

  46. H.F. Ginz, P.A. Iaizzo, T. Girard, A. Urwyler, H. Pargger: Decreased isometric skeletal muscle force in critically ill patients, Swiss Med. Wkly. 135, 555–561 (2005)

    Google Scholar 

  47. H.F. Ginz, P.A. Iaizzo, A. Urwyler, H. Pargger: Use of noninvasive stimulation muscle force assessment in long-term critically ill patients: A future standard in the intensive care unit?, Acta Anaesthesiol. Scand. 52, 20–27 (2008)

    Google Scholar 

  48. H.J. Harlow, T. Lohuis, T.D. Beck, P.A. Iaizzo: Muscle strength in overwintering bears, Nature 409, 997 (2001)

    Article  Google Scholar 

  49. T.D. Lohuis, H.J. Harlow, T.D. Beck, P.A. Iaizzo: Hibernating bears conserve muscle strength and maintain fatigue resistance, Physiol. Biochem. Zool. 80, 257–269 (2007)

    Article  Google Scholar 

  50. S.A. Frommer, J.M. Jacobs, D.N. Qiu, G.W. Williams, C.L. Soule, C.M. Verfaillie, P.A. Iaizzo: Assessment of murine muscle contractile properties using a novel in vivo system, Muscle Nerve (2011), in press

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iaizzo, P.A., Durfee, W.K. (2011). Functional Force Assessment of Skeletal Muscles. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics