Advertisement

Estimating Array Connectivity and Applying Multi-output Node Structure in Evolutionary Design of Digital Circuits

  • Jie Li
  • Shitan Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)

Abstract

Array connectivity is an important feature for measuring the efficiency of evolution. Generally, the connectivity is estimated by array geometry and level-back separately. In this paper, a connectivity model based on the path number between the first node and the last node is esteblished. With the help of multinomial coefficient expansion, a formula for estimating array connectivity is presented. By applying this technique, the array geometry and level-back are taken into account simultaneously. Comparison of connectivity within arrays of different geometries and level-backs becomes possible. Enlightened by this approach, a multi-output node structure is developed. This structure promotes the connectivity without increasing the array size. A multi-objective fitness funciton based on power consumption and critical delay of circuits is proposed, which enables evolved circuits to agree with the requirements of applications. Experimental results show that the proposed approach offers flexibility in constructing circuits and thus improves the efficiency of evolutionary design of circuits.

Keywords

Evolvable Hardware array connectivity multinomial coefficient multi-output node structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coello, C.A.C., Christiansen, A.D., Aguirre, A.H.: Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design 2(4), 299–314 (2000)Google Scholar
  2. 2.
    Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Sekanina, L.: Design Methods for Polymorphic Digital Circuits. In: Proceeding of 8th IEEE Design and Diagnostic Circuits and Systems Workshop, Sopron, HU, UWH, pp. 145–150. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Kalganova, T., Miller, J.F.: Evolving more Efficient Digital Circuits by Allowing Circuit Layout Evolution and Multi-objective Fitness. In: Stoica, A., et al. (eds.) Proceeding of the 1st NASA/DoD Workshop on Evolvable Hardware, pp. 54–65. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  5. 5.
    Vassilev, V.K., Job, D., Miller, J.F.: Towarda the Automatic Design of More Efficient Digital Circuits. In: Lohn, J., et al. (eds.) Proceeding of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE Computer Society Press, Los Alamitos, CA (2000)CrossRefGoogle Scholar
  6. 6.
    Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1(1), 7–35 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kalganova, T., Miller, J.F.: Circuits Layout Evolution: An Evolvable Hardware Approach. Coloquium on Evolutionary Hardware Systems. IEE Coloquium Digest (1999)Google Scholar
  8. 8.
    Miller, J.F., Thomson, P.: Aspects of Digital Evolution: Geometry and Learning. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 25–35. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Kalganova, T., Miller, J.F., Fogarty, T.: Some Aspects of an Evolvable Hardware Approach for Multiple-valued Combinational Circuit Design. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 78–89. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Sekanina, L., Vašĭšek, Z.: On the Practical Limits of the Evolutionary Digital Filter Design at the Gate Level. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 344–355. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Miller, J.F., Thomson, P., Fogarty, T.C.: Genetic Algorithms and Evolution Strategies. In: Quagliarella, D., et al. (eds.) Engineering and Computer Science: Recent Advancements and Industrial Applications, Wiley, Chichester (1997)Google Scholar
  12. 12.
    Kalganova, T.: An Extrinsic Function-level Evolvable Hardware Approach. In: Euro 2000. Proceeding of the 3rd Euopean Conference on Genetic Programming, Springer, London (2000)Google Scholar
  13. 13.
    Vassilev, V.K., Miller, J.F.: Scalability Problem of Digital Circuit Evolution Evolvability and Efficient Design. In: Proceeding of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  14. 14.
    Sekanina, L.: Evolutionary Design of Gate-level Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Uyemura, J.P.: Introduction to VLSI Circuits and Systems. Wiley, Chichester (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jie Li
    • 1
  • Shitan Huang
    • 1
  1. 1.Xi’an Microelectronics Technology Institute, 710071 Xi’an, ShannxiChina

Personalised recommendations