An Intrinsic Evolvable Hardware Based on Multiplexer Module Array

  • Jixiang Zhu
  • Yuanxiang Li
  • Guoliang He
  • Xuewen Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)


In traditional, designing analog and digital electrical circuits are the tasks of hard engineering, but with the emergence of Evolvable Hardware (EHW) and many researchers’ significant research in this domain, EHW has been established as a promising solution for automatic design of digital and analog circuits during the last 10-odd years. At present, the main research in EHW field is focused on the extrinsic and intrinsic evolution. In this paper, we will fix our attention on intrinsic evolution. Some researchers concentrate on how to implement intrinsic evolution, mainly including the following three aspects: The first, evolve the bitstream directly and then recompose the bitstream; The second, amend the content of Look-Up-Table (LUT) by relative tools; The third, set up a virtual circuit on a physical chip, and then evolve its “parameters” which are defined by the deviser, when the parameters are changed, the corresponding circuit is evolved. This paper ignores the first and the second approaches, and proposes a virtual circuit based on Multiplexer Module Array (MMA) which is implemented on a Xilinx Virtex-II Pro (XC2VP20) FPGA.


intrinsic digital multiplexer FPGA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Upegui, A., Sanchez, E.: Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 56–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Guccione, S., Levi, D., Sundararajan, P.: JBits: Java based interface for reconfigurable computing. Xilinx Inc. (1999)Google Scholar
  3. 3.
    Hollingworth, G., Smith, S., Tyrrell, A.: Safe Intrinsic Evolution of Virtex Devices. In: The Second NASA/DoD Workshop on Evolvable Hardware[C], pp. 195–202 (2000)Google Scholar
  4. 4.
    Hollingworth, G., Smith, S., Tyrrell, A.: The Intrinsic Evolution of Virtex Devices Through Internet Reconfigurable Logic. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, p. 72. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Pauline, C.: Haddow and Gunnar Tufte. Bridging the Genotype-Phenotype Mapping for Digital FPGAs, pp. 109–115. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  6. 6.
    Sekanina, L.: On Dependability of FPGABased Evolvable Hardware Systems That Utilize Vitual Reconfigurable Circuits, pp. 221–228. ACM, New York (2006)Google Scholar
  7. 7.
    Glette, K., Torresen, J.: A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 66–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kalganova, T.: Bidirectional Incremental Evolution in Extrinsic Evolvable Hardware. In: EH 2000. Proc. of the Second NASA/DOD Workshop on Evolvable Hardware, pp. 65–74 (2000)Google Scholar
  9. 9.
    Stomeo, E., Kalganova, T., Lambert, C.: Generalized Disjunction Decomposition for Evolvable Hardware. IEEE, Transactions on Systems, MAN And Cybernetics—Part B: Cybernetic 36(5), 1024–1043 (2006)CrossRefGoogle Scholar
  10. 10.
    Alpha Data Parallel Systems Ltd. ADM-XRC SDK 4.7.0 User Guide (Win32), Version (2006)Google Scholar
  11. 11.
    Alpha Data Parallel Systems Ltd. ADM-XRC-PRO-Lite (ADM-XPL) Hardware Manual, Version 1.8 (2005)Google Scholar
  12. 12.
    Alpha Data Parallel Systems Ltd. ADC-PMC2 User Manual, Version 1.1 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jixiang Zhu
    • 1
  • Yuanxiang Li
    • 1
  • Guoliang He
    • 1
  • Xuewen Xia
    • 1
  1. 1.The State’s Key Laboratory of Software Engineering,WuHan University 

Personalised recommendations