Advertisement

Designing Polymorphic Circuits with Evolutionary Algorithm Based on Weighted Sum Method

  • Houjun Liang
  • Wenjian Luo
  • Xufa Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)

Abstract

Polymorphic circuit is a kind of multifunctional circuits that can perform two or more functions under different conditions. And those functions can be activated by changing control parameters, such as temperature, power supply voltage, illumination and so on. Polymorphic circuit provides a novel approach to build multifunctional circuits, and it can be used in many fields. However, polymorphic circuit can not be designed with conventional methods and is hard to be evolved with evolutionary algorithms directly. A novel evolutionary algorithm based on the weighted sum method is proposed in this paper, which can be used to evolve polymorphic circuits at gate level. The experimental results demonstrate that this algorithm can increase the success ratio and decrease the evolutionary generations needed to evolve a polymorphic circuit.

Keywords

Polymorphic Circuit Evolutionary Algorithm Weighted Sum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoica, A., Zebulum, R., Keymeulen, D.: Polymorphic Electronics. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 291–301. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Stoica, A., Zebulum, R., Keymeulen, D.: Evolvable Hardware Solutions for Extreme Temperature Electronics. In: Proc. of the Third NASA/DoD Workshop on Evolvable Hardware, vol. 93–97, IEEE, Los Alamitos (2001)Google Scholar
  3. 3.
    Stoica, A., Zebulum, R., Keymeulen, D.: On Polymorphic Circuits and Their Design Using Evolutionary Algorithms. In: AI 2002. Proceedings of IASTED International Conference on Applied Informatics, Innsbruck, Austrilia (2002)Google Scholar
  4. 4.
    Stoica, A., Zebulum, R., Keymeulen, D.: Taking Evolutionary Circuit Design from Experimentation to Implementation: Some Useful Techniques and a Silicon Demonstration. IEE Proceedings on Computers and Digital Techniques 151, 295–300 (2004)CrossRefGoogle Scholar
  5. 5.
    Stoica, A., Zebulum, R.S., Keymeulen, D., Ramesham, R.: Temperature-Adaptive Circuits on Reconfigurable Analog Arrays. In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey, pp. 28–31 (2006)Google Scholar
  6. 6.
    Bidlo, M., Sekanina, L.: Providing Information from the Environment for Growing Electronic Circuits through Polymorphic Gates. In: Proceedings of Genetic and Evolutionary Computation Conference, New York, US, pp. 242–248 (2005)Google Scholar
  7. 7.
    Sekanina, L.: Evolutionary Design of Gate-Level Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkkshops 2005. LNCS, vol. 3449, pp. 185–194. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Sekanina, L.: Design Methods for Polymorphic Digital Circuits. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkkshops 2005. LNCS, vol. 3449, pp. 185–190. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Sekanina, L., Martinek, T., Gajda, Z.: Extrinsic and Intrinsic Evolution of Multifunctional Combinational Modules. In: IEEE Congress on Evolutionary Computation (2006)Google Scholar
  10. 10.
    Sekanina, L., Starecek, L., Gajda, Z., Kotasek, Z.: Evolution of Multifunctional Combinational Modules Controlled by the Power Supply Voltage. In: Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey, pp. 186–193 (2006)Google Scholar
  11. 11.
    Stoica, A., Keymeulen, D., Arslan, T.: Circuit Self-Recovery Experiments in Extreme Environments. In: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pp. 142–145 (2004)Google Scholar
  12. 12.
    Miller, T.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Miller, J., Job, D.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1, 7–35 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Houjun Liang
    • 1
  • Wenjian Luo
    • 1
    • 2
  • Xufa Wang
    • 1
    • 2
  1. 1.Nature Inspired Computation Applications Laboratory, Department of Computer Science Technology, University of Science Technology of China Hefei 230027 AnhuiChina
  2. 2.Anhui Key Laboratory of Software in Computing Communication, University of Science Technology of China Hefei 230027China

Personalised recommendations