Research on Adaptive System of the BTT-45 Air-to-Air Missile Based on Multilevel Hierarchical Intelligent Controller

  • Yongbing Zhong
  • Jinfu Feng
  • Zhizhuan Peng
  • Xiaolong Liang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)


This paper presents an adaptive control system suitable for the control technology of BTT-45 air-to-air missile. It resolves a problem of the BTT-45 missile’ channel coupling through the application of the idea which is similar to “reversing design”. The proposed system has the following features: (1)Adaptive robust control; (2)Self-decoupling. A simulation example is used to demonstrate excellent performance of the proposed system.


BTT STT Air-to-Air Missile Reversing Design “IC” 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng, J., Yang, D.: The Application of Robust Control Theory to Bank-to-Turn Missile. National Defence Industry Press, BeiJing (2001)Google Scholar
  2. 2.
    Luo, J., Xie, S., Jiang, Z., Wang, Y.: Intelligence Control Engineering and its Applied Example. Chemical Industry Press, BeiJing (2005)Google Scholar
  3. 3.
    Cai, Z.: Intelligence Control. Electronic Industry Press, BeiJing (2004)Google Scholar
  4. 4.
    Grayson, M.: Principles of Guided Missile Design. Van Nostrand, New York (1960)Google Scholar
  5. 5.
    Eichblatt Jr., E.J. (ed.): Test and Evaluation of the Tactical Missile. AIAA, Washington, DC (1989)Google Scholar
  6. 6.
    Lin, C.F.: Modern Navigation, Guidance, and Control Processing. Prentice-Hall, Englewood Cliffs, NJ (1991)Google Scholar
  7. 7.
    Eberhardt, R., Wise, K.A.: Automated gain schedules for missileautopilots using robustness theory. In: Proc. 1st IEEE Conf. Contr. Applicat., Dayton, OH, pp. 234–250 (1992)Google Scholar
  8. 8.
    White, D.P., Wozniak, J.G., Lawrence, D.A.: Missile autopilot design using gain scheduling technique. In: Proc. 26th Southeastern Symp. Syst. Theory, Athens, OH, pp. 606–610 (1994)Google Scholar
  9. 9.
    Lin, C.L., Su, H.W.: Adaptive fuzzy gain scheduling in guidance system design. AIAA J. Guid., Contr., Dyna. 24, 683–692 (2001)CrossRefGoogle Scholar
  10. 10.
    Tan, S., Hang, C.C., Chai, J.S.: Gain scheduling: From conventional to neuro-fuzzy. Automatica 33, 411–419 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. SMC-15, 116–132 (1985)Google Scholar
  12. 12.
    Seng, T.L., Khalid, M.B., Yusof, R.: Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans. Syst., Man, Cybern. B 29, 226–236 (1999)CrossRefGoogle Scholar
  13. 13.
    Siarry, P., Guely, F.: A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases. Fuzzy Sets Syst. 99, 37–47 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    de Sousa, A.T., Madrid, M.K.: Optimization of Takagi-Sugeno fuzzy controllers using a genetic algorithm. In: Proc. 9th IEEE Int. Conf. Fuzzy Syst., San Antonio, TX, pp. 30–35 (2000)Google Scholar
  15. 15.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)zbMATHGoogle Scholar
  16. 16.
    Hull, R.A., Johnson, R.W.: Performance enhancement of a missile autopilot via genetic algorithm optimization techniques. Proc. Amer. Contr. Conf., 1680–1684 (1994)Google Scholar
  17. 17.
    Kim, Y.S., Han, H.W.G., Kuo, T.Y.: An intelligent missile autopilot using genetic algorithm. In: Proc. 1997 IEEE Int. Conf. Syst., Man, Cybern. (1997)Google Scholar
  18. 18.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applicationsto modeling and control. IEEE Trans. Syst., Man, Cybern. SMC-15, 116–132 (1985)Google Scholar
  19. 19.
    Sugeno, M.: On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Trans. Fuzzy Syst. 7, 201–224 (1999)CrossRefGoogle Scholar
  20. 20.
    Teixeira, M.C.M., Zak, S.H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 7, 133–142 (1999)CrossRefGoogle Scholar
  21. 21.
    Begovich, O., Sanchez, E.N., Maldonado, M.: T–S scheme for trajectory tracking of an underactuated robot. In: Proc. IEEE Fuzzy Conf., San Antonio, TX, May 2000, pp. 798–803 (2000)Google Scholar
  22. 22.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs. NJ (1991)zbMATHGoogle Scholar
  23. 23.
    Joo, Y.H., Shieh, L.S., Chen, G.R.: Hybrid state space fuzzy model based controller with dual-rate sampling for digital control of chaotic systems. IEEE Trans. Fuzzy Syst. 7, 394–408 (1999)CrossRefGoogle Scholar
  24. 24.
    Ogata, K.: Discrete-Time Control Systems. Prentice-Hall, Englewood Cliffs, NJ (1987)Google Scholar
  25. 25.
    Chen, C.T.: Linear System Theory and Design, 3rd edn. Oxford Univ. Press, London, UK (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yongbing Zhong
    • 1
  • Jinfu Feng
    • 1
  • Zhizhuan Peng
    • 1
  • Xiaolong Liang
    • 1
  1. 1.The Engineering Institute, Air Force Engineering University. 710038 Xi’anChina

Personalised recommendations