Advertisement

Reducing the Area on a Chip Using a Bank of Evolved Filters

  • Zdenek Vasicek
  • Lukas Sekanina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)

Abstract

An evolutionary algorithm is utilized to find a set of image filters which can be employed in a bank of image filters. This filter bank exhibits at least comparable visual quality of filtering in comparison with a sophisticated adaptive median filter when applied to remove the salt-and-pepper noise of high intensity (up to 70% corrupted pixels). The main advantage of this approach is that it requires four times less resources on a chip when compared to the adaptive median filter. The solution also exhibits a very good behavior for the impulse bursts noise which is typical for satellite images.

Keywords

Evolutionary Algorithm Bank Filter Hardware Implementation Impulse Noise Median Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koivisto, P., Astola, J., Lukin, V., Melnik, V., Tsymbal, O.: Removing Impulse Bursts from Images by Training-Based Filtering. EURASIP Journal on Applied Signal Processing 2003(3), 223–237 (2003)CrossRefGoogle Scholar
  2. 2.
    Dumoulin, J., Foster, J., Frenzel, J., McGrew, S.: Special Purpose Image Convolution with Evolvable Hardware. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoWorkshops 2000. LNCS, vol. 1803, pp. 1–11. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Porter, P.: Evolution on FPGAs for Feature Extraction. PhD thesis, Queensland University of Technology, Brisbane, Australia (2001)Google Scholar
  4. 4.
    Sekanina, L.: Evolvable components: From Theory to Hardware Implementations. Natural Computing. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Schulte, S., Nachtegael, M., Witte, V.D., Van der Weken, D., Kerre, E.E.: Fuzzy impulse noise reduction methods for color images. In: Computational Intelligence, Theory and Applications International Conference 9th Fuzzy Days in Dortmund, pp. 711–720. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Hwang, H., Haddad, R.A.: New algorithms for adaptive median filters. In: Tzou, K.-H., Koga, T. (eds.) Proc. SPIE, Visual Communications and Image Processing 1991: Image Processing, vol. 1606, pp. 400–407 (1991)Google Scholar
  7. 7.
    Yung, N.H., Lai, A.H.: Novel filter algorithm for removing impulse noise in digital images. In: Proc. SPIE, Visual Communications and Image Processing 1995, vol. 2501, pp. 210–220 (1995)Google Scholar
  8. 8.
    Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of salt-and-pepper noise. In: Scale Space, pp. 107–118 (2005)Google Scholar
  9. 9.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1-2), 99–120 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ahmad, M.O., Sundararajan, D.: A fast algorithm for two-dimensional median filtering. IEEE Transactions on Circuits and Systems 34, 1364–1374 (1987)CrossRefGoogle Scholar
  11. 11.
    Dougherty, E.R., Astola, J.T.: Nonlinear Filters for Image Processing. SPIE/IEEE Series on Imaging Science & Engineering (1999)Google Scholar
  12. 12.
    Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)CrossRefGoogle Scholar
  13. 13.
    Slany, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-level cgp. In: EuroGP 2007. LNCS, vol. 4445, pp. 311–320. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 2nd edn. Addison-Wesley, Reading (1998)Google Scholar
  15. 15.
    Vasicek, Z., Sekanina, L.: An area-efficient alternative to adaptive median filtering in fpgas. In: Proc. of the 17th Conf. on Field Programmable Logic and Applications, pp. 1–6. IEEE Computer Society Press, Los Alamitos (to appear, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zdenek Vasicek
    • 1
  • Lukas Sekanina
    • 1
  1. 1.Faculty of Information Technology, Brno University of Technology, Božetěchova 2, 612 66 BrnoCzech Republic

Personalised recommendations