Skip to main content

Sliding Algorithm for Reconfigurable Arrays of Processors

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

Abstract

Electronic systems with intrinsic adaptive and evolvable features can potentially significantly increase functionality of a system. To achieve high level of adaptivity the system must be able to modify its internal configuration under changing environmental conditions without interrupting operation. This can be achieved through dynamic reconfiguration. Dynamic reconfiguration of arrays of processors often relies on the specialized architectures with the built-in reconfiguration capacities. Specialized architectures suffer from lack of flexibility and high cost. Reconfiguration algorithms for highly practical general purpose architectures such as rectangular grid of processors are highly complex and, thus, unsuitable for dynamic reconfiguration. This paper proposes a systematic approach to reconfigurable architectures. The general framework for reconfiguration algorithms design is presented based on discrete Morse functions and discrete vector fields on cellular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milnor, J.: Morse Theory. Ann. Math. St, Prinston Univ. Pr. (1973)

    Google Scholar 

  2. Forman, R.: A User’s Guide to Morse Theory. In: Sem. Lotharingen Comb. (2002)

    Google Scholar 

  3. Forman, R.: Morse Theory for Cell Complexes. Adv. in Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Forman, R.: Combinatorial Vector Fields and Dynamical Systems. Mathematische Zeitung 228, 629–681 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin and Heidelberg GmbH (1988)

    MATH  Google Scholar 

  6. Leiserson, C.E.: Area-Efficient Graph Layout (for VLSI). In: IEEE 21st Ann. Symp. Found. Comp. Sc. (1980)

    Google Scholar 

  7. Raghavendra, C.S., Avizienis, A., Ercegovac, M.D.: Fault Tolerance in Binary Tree Architectures. IEEE Trans. Comp. 33, 568–572 (1984)

    Article  Google Scholar 

  8. Hassan, A., Agarval, V.: A Fault-tolerant modular archtecture for binary trees. IEEE Trans. Comp. 35, 356–361 (1986)

    Article  Google Scholar 

  9. Jigang, W., Shrikanthan, T.: An Improved Reconfiguration Algorithm for Degradable VLSI/WSI Array. Jour. Syst. Architecture 49, 23–31 (2003)

    Article  Google Scholar 

  10. Lee, C.Y.: The Algorithm for Path Connections and Its Applications. IRE Trans. Electr. Comp. EC-10, 346–365 (1961)

    Google Scholar 

  11. Kung, S.-Y., Jean, S.-N., Chang, C.-W.: Fault-Tolerant Array Processors Using Single Track Switches. IEEE Trans. Comp. 38, 501–514 (1989)

    Article  Google Scholar 

  12. Abachi, H., Walker, A.-J.: Reliability analysis of tree, torus and hypercube message passing architecture. In: Proc. of the 29th Southeast. Symp. on Syst. Th., pp. 44–48. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  13. Chean, M., Fortes, J.A.B.: A Taxonomy of Reconfiguration Techniques for Fault-Tolerant Proccesor Arrays. IEEE Comp. 23, 55–69 (1990)

    Google Scholar 

  14. Ortega, C., Mange, D., Smith, S.L., Tyrrell, A.M.: Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties. Jour. of Gen. Prog. and Evol. Machines 1, 187–215 (2000)

    Article  MATH  Google Scholar 

  15. Greenstead, A.J., Tyrrell, A.M.: An Endocrinologic-Inspired Hardware Implementation of a Multicellular System. In: Proc.NASA/DoD Conf. Evol. Hardware, Seattle (2004)

    Google Scholar 

  16. Lala, P.K.: Fault-Tolerant and Fault Testable Hardware Design. Prentice Hall Int., Englewood Cliffs (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dowding, N., Tyrrell, A.M. (2007). Sliding Algorithm for Reconfigurable Arrays of Processors. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics