Sliding Algorithm for Reconfigurable Arrays of Processors

  • Natalia Dowding
  • Andy M. Tyrrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)


Electronic systems with intrinsic adaptive and evolvable features can potentially significantly increase functionality of a system. To achieve high level of adaptivity the system must be able to modify its internal configuration under changing environmental conditions without interrupting operation. This can be achieved through dynamic reconfiguration. Dynamic reconfiguration of arrays of processors often relies on the specialized architectures with the built-in reconfiguration capacities. Specialized architectures suffer from lack of flexibility and high cost. Reconfiguration algorithms for highly practical general purpose architectures such as rectangular grid of processors are highly complex and, thus, unsuitable for dynamic reconfiguration. This paper proposes a systematic approach to reconfigurable architectures. The general framework for reconfiguration algorithms design is presented based on discrete Morse functions and discrete vector fields on cellular complexes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milnor, J.: Morse Theory. Ann. Math. St, Prinston Univ. Pr. (1973)Google Scholar
  2. 2.
    Forman, R.: A User’s Guide to Morse Theory. In: Sem. Lotharingen Comb. (2002)Google Scholar
  3. 3.
    Forman, R.: Morse Theory for Cell Complexes. Adv. in Math. 134, 90–145 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Forman, R.: Combinatorial Vector Fields and Dynamical Systems. Mathematische Zeitung 228, 629–681 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin and Heidelberg GmbH (1988)zbMATHGoogle Scholar
  6. 6.
    Leiserson, C.E.: Area-Efficient Graph Layout (for VLSI). In: IEEE 21st Ann. Symp. Found. Comp. Sc. (1980)Google Scholar
  7. 7.
    Raghavendra, C.S., Avizienis, A., Ercegovac, M.D.: Fault Tolerance in Binary Tree Architectures. IEEE Trans. Comp. 33, 568–572 (1984)CrossRefGoogle Scholar
  8. 8.
    Hassan, A., Agarval, V.: A Fault-tolerant modular archtecture for binary trees. IEEE Trans. Comp. 35, 356–361 (1986)CrossRefGoogle Scholar
  9. 9.
    Jigang, W., Shrikanthan, T.: An Improved Reconfiguration Algorithm for Degradable VLSI/WSI Array. Jour. Syst. Architecture 49, 23–31 (2003)CrossRefGoogle Scholar
  10. 10.
    Lee, C.Y.: The Algorithm for Path Connections and Its Applications. IRE Trans. Electr. Comp. EC-10, 346–365 (1961)Google Scholar
  11. 11.
    Kung, S.-Y., Jean, S.-N., Chang, C.-W.: Fault-Tolerant Array Processors Using Single Track Switches. IEEE Trans. Comp. 38, 501–514 (1989)CrossRefGoogle Scholar
  12. 12.
    Abachi, H., Walker, A.-J.: Reliability analysis of tree, torus and hypercube message passing architecture. In: Proc. of the 29th Southeast. Symp. on Syst. Th., pp. 44–48. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  13. 13.
    Chean, M., Fortes, J.A.B.: A Taxonomy of Reconfiguration Techniques for Fault-Tolerant Proccesor Arrays. IEEE Comp. 23, 55–69 (1990)Google Scholar
  14. 14.
    Ortega, C., Mange, D., Smith, S.L., Tyrrell, A.M.: Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties. Jour. of Gen. Prog. and Evol. Machines 1, 187–215 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Greenstead, A.J., Tyrrell, A.M.: An Endocrinologic-Inspired Hardware Implementation of a Multicellular System. In: Proc.NASA/DoD Conf. Evol. Hardware, Seattle (2004)Google Scholar
  16. 16.
    Lala, P.K.: Fault-Tolerant and Fault Testable Hardware Design. Prentice Hall Int., Englewood Cliffs (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Natalia Dowding
    • 1
  • Andy M. Tyrrell
    • 1
  1. 1.Intelligent Systems Research Group, Department of Electronics, University of YorkUnited Kingdom

Personalised recommendations