Advertisement

Bio-inspired Systems with Self-developing Mechanisms

  • André Stauffer
  • Daniel Mange
  • Joël Rossier
  • Fabien Vannel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4684)

Abstract

Bio-inspired systems borrow three structural principles characteristic of living organisms: multicellular architecture, cellular division, and cellular differentiation. Implemented in silicon according to these principles, our cellular systems are endowed with self-developing mechanisms like configuration, cloning, cicatrization, and regeneration. These mechanisms are made of simple processes such as growth, load, branching, repair, reset, and kill. The hardware simulation and hardware implementation of the self-developing mechanisms and their underlying processes constitute the core of this paper.

Keywords

Hardware Implementation Middle Cell Totipotent Cell Reset Process Faulty Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canham, R., Tyrrell, A.M.: An embryonic array with improved efficiency and fault tolerance. In: Lohn, J., et al. (eds.) EH 2003. Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 265–272. IEEE Computer Society Press, Los Alamitos, CA (2003)Google Scholar
  2. 2.
    Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward robust integrated circuits: The Embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)CrossRefGoogle Scholar
  3. 3.
    Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Embryonics machines that divide and differentiate. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Self-replicating loop with universal construction. Physica D 191(1-2), 178–192 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mudry, P.-A., Vannel, F., Tempesti, G., Mange, D.: Confetti: A reconfigurable hardware platform for prototyping cellular architectures. In: RAW 2007. Proceedings of the 14th Reconfigurable Architectures Workshop, IEEE Computer Society Press, Los Alamitos, CA (2007)Google Scholar
  6. 6.
    Stauffer, A., Mange, D., Tempesti, G.: Embryonic machines that grow, self-replicate and self-repair. In: Lohn, J., et al. (eds.) EH 2005. Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, pp. 290–293. IEEE Computer Society Press, Los Alamitos, CA (2005)Google Scholar
  7. 7.
    Stauffer, A., Mange, D., Tempesti, G.: Bio-inspired computing machines with self-repair mechanisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Stauffer, A., Sipper, M.: The data-and-signals cellular automaton and its application to growing structures. Artificial Life 10(4), 463–477 (2004)CrossRefGoogle Scholar
  9. 9.
    Vannel, F., Mudry, P.-A., Mange, D., Tempesti, G.: An embryonic array with improved efficiency and fault tolerance. In: WEAH 2007. Proceedings of the Workshop on Evolvable and Adaptative Hardware, IEEE Computational Intelligence Society, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • André Stauffer
    • 1
  • Daniel Mange
    • 1
  • Joël Rossier
    • 1
  • Fabien Vannel
    • 1
  1. 1.Ecole polytechnique fédérale de Lausanne (EPFL), Logic Systems Laboratory, CH-1015 LausanneSwitzerland

Personalised recommendations