Skip to main content

A Modular Formalisation of Finite Group Theory

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4732))

Included in the following conference series:

Abstract

In this paper, we present a formalisation of elementary group theory done in Coq. This work is the first milestone of a long-term effort to formalise the Feit-Thompson theorem. As our further developments will heavily rely on this initial base, we took special care to articulate it in the most compositional way.

This work was supported by the Microsoft Research - Inria Joint Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthan, R.: Some group theory, available at http://www.lemma-one.com/ProofPower/examples/wrk068.pdf

  2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A Formally Verified Proof of the Prime Number Theorem. ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  3. Bailey, A.: Representing algebra in LEGO. Master’s thesis, University of Edinburgh (1993)

    Google Scholar 

  4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261–293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 188. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  6. Constantine, G.M.: Group Theory, available at http://www.pitt.edu/~gmc/algsyl.html

  7. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13(3), 775–1029 (1963)

    MATH  MathSciNet  Google Scholar 

  8. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 96–111. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Gonthier, G.: A computer-checked proof of the four-colour theorem, available at http://research.microsoft.com/~gonthier/4colproof.pdf

  10. Gonthier, G.: Notations of the four colour theorem proof, available at http://research.microsoft.com/~gonthier/4colnotations.pdf

  11. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher-order logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  12. Gunter, E.: Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-38, University of Pennsylvania (1989)

    Google Scholar 

  13. Kammüller, F., Paulson, L.C.: A Formal Proof of Sylow’s Theorem. Journal of Automating Reasoning 23(3-4), 235–264 (1999)

    Article  MATH  Google Scholar 

  14. The Coq development team: The Coq proof assistant reference manual. LogiCal Project, Version 8.1 (2007)

    Google Scholar 

  15. The Mizar Home Page, http://www.mizar.org/

  16. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I (December 1996)

    Google Scholar 

  17. Paulson, L.C. (ed.): Isabelle: a generic theorem prover. LNCS, vol. 828. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  18. Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. The Flyspeck Project, http://www.math.pitt.edu/~thales/flyspeck/

  20. Rideau, L., Théry, L.: Formalising Sylow’s theorems in Coq. Technical Report 0327, INRIA (2006)

    Google Scholar 

  21. Werner, B.: Une théorie des Constructions Inductives. PhD thesis, Paris 7 (1994)

    Google Scholar 

  22. Wielandt, H.: Ein beweis für die Existenz der Sylowgruppen. Archiv der Mathematik 10, 401–402 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu, Y.: Computer Proofs in Group Theory. J. Autom. Reasoning 6(3), 251–286 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Schneider Jens Brandt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L. (2007). A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2007. Lecture Notes in Computer Science, vol 4732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74591-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74591-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74590-7

  • Online ISBN: 978-3-540-74591-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics