Skip to main content

Gravity Field Modeling on the Basis of GRACE Range-Rate Combinations

  • Conference paper
Book cover VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 132))

Abstract

A new functional model is proposed for gravity field modeling on the basis of KBR data from the GRACE satellite mission. This functional model explicitly connects a linear combination of gravitational potential gradients with a linear combination of range-rate measurements at several successive epochs. The system of observation equations is solved in the least-squares sense by means of the pre-conditioned conjugate gradient method. Noise in range-rate combinations is strongly dependent on frequency, so that a proper frequency-dependent data weighting is a must. The new approach allows a high numerical efficiency to be reached. Both simulated and real GRACE data have been considered. In particular, we found that the resulting gravity field model is rather sensitive to errors in the satellite orbits. A preliminary gravity field model we obtained from a 101 day set of GRACE data has a comparable accuracy with the GGM01S model derived by CSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Biancale, G. Balmino, S. Bruinsma, J. M. Lemoine, S. Loyer, and F. Perosanz. GRACE data processing in CNES/GRGS; results and discussion. In J. Ries and S. Bettadpur, editors, Presentation Proceeding of the GRACE Science Team Meeting at Center for Space Research, The University of Texes at Austin, October 13–14, 2005, pages 203–220. 2005.

    Google Scholar 

  • K. Case, G. Kruizinga, and S. C. Wu. GRACE Level 1B Data Product User Handbook JPL D-22027 GRACE 327–733. 2004.

    Google Scholar 

  • P. Ditmar, R. Klees, and F. Kostenko. Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. Journal of Geodesy, 76:690–705, 2003.

    Article  Google Scholar 

  • P. Ditmar, R. Klees, and X. Liu. Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. Journal of Geodesy, 81:81–96, 2007.

    Article  Google Scholar 

  • P. Ditmar and A. A. van Eck van der Sluijs. A technique for Earth’s gravity field modeling on the basis of satellite accelerations. Journal of Geodesy, 78:12–33, 2004.

    Article  Google Scholar 

  • P. Ditmar, and X. Liu. Gravity field modeling on the basis of GRACE range-rate combinations: current results and challenge. The Proceeding of the ’1st International Symposium of the International Gravity Field Service (IGFS): Gravity Field of the Earth’. p 181–186, Aug 28– Sept 1, 2006, Istanbul, Trukey.

    Google Scholar 

  • C. Förste, F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. König, K. H. Neumayer, M. Rothacher, C. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, and J. C. Raimondo. A New High Resolution Global Gravity Field Model Derived From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29, April 2005.

    Google Scholar 

  • S.-C. Han, C. K. Shum, and A. Braun. High-resolution continental water storage recovery from low-low satellite-to-satellite tracking. Journal of Geodynamics, 39, 2005a.

    Google Scholar 

  • S.-C. Han, C. K. Shum, C. Jekeli, and D. Alsdorf. Improved estimation of terrestrial water storage changes from GRACE. Geophysical Research Letters, 32, 2005b. L07302, doi: 10.1029/2005GL022382.

    Article  Google Scholar 

  • K. H. Ilk, M. Feuchtinger, and T. Mayer-Gürr. Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In Proceedings of the IAG Symposium G02, IUGG General Assembly 2003, Sapporo, Japan. 2003.

    Google Scholar 

  • C. Jekeli. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mechanics and Dynamical Astronomy, 75:85–101, 1999.

    Article  Google Scholar 

  • R. Klees and P. Ditmar. How to handle colored noise in large least-squares problems in the presence of data gaps? In F. Sans‘o, editor, V Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, volume 127, pages 39–48. Springer, Berlin, Heidelberg, New York, 2004.

    Google Scholar 

  • W. Keller and M. A. Sharifi. Satellite gradiometry using a satellite pair. Journal of Geodesy, 78:544–557, 2005.

    Article  Google Scholar 

  • R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser. Precise GRACE baseline determination using gps. GPS Solutions, 9(1):21–31, 2005.

    Article  Google Scholar 

  • R. D. Ray. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2. NASA Technical Memorandum 209478, 1999.

    Google Scholar 

  • C. Reigber, R. Schmidt, F. Flechtner, R. König, U. Meyer, K.-H. Neumayer, P. Schwintzer, and S. Y. Zhu. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. Journal of Geodynamics, 39:1–10, 2005.

    Article  Google Scholar 

  • T. Reubelt, G. Austen, and E. W. Grafarend. Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. Journal of Geodesy, 77:257–278, 2003.

    Article  Google Scholar 

  • R. Rummel. Determination of short-wavelength components of the gravity field from satellite-to-satellite tracking or satellite gradiometry – an attempt to an identification of problem areas. Manuscripta Geodetica, 4(2):107–148, 1979.

    Google Scholar 

  • E. M. Standish. JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048, 1998.

    Google Scholar 

  • B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31, 2004. L09607, doi: 10.1029/2004GL019920.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ditmar, P., Liu, X. (2008). Gravity Field Modeling on the Basis of GRACE Range-Rate Combinations. In: Xu, P., Liu, J., Dermanis, A. (eds) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. International Association of Geodesy Symposia, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74584-6_3

Download citation

Publish with us

Policies and ethics