The ITRF Beyond the “Linear” Model. Choices and Challenges

  • A. Dermanis
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 132)


The current solution to the choice of a reference system for the coordinates of a global geodetic network is based on a linear model for the time evolution of station coordinates. The advantages and disadvantages between a mathematical approach and a physical approach to the optimal definition of a reference system for the International Terrestrial Reference Frame (ITRF) are examined. The optimality conditions are derived for a general class of models, consisting of linear combinations of a system of base functions which is closed under differentiation and multiplication. The general results are then applied and elaborated for polynomial and Fourier Series models. Finally the problem of how these conditions should be implemented in practice is investigated.


Reference systems reference frames International Terrestrial Reference Frame ITRF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi, Z., (2005). Status of the ITRF 2004. Journées 2005 Systèmes de Référence Spatio-Temporels “Earth Dynamics and Reference Systems: Five Years After the Adoption of the IAU 2000 Resolutions”, Warsaw 19–21 September 2005. Proceedings in print.Google Scholar
  2. Dermanis, A., (1995). The Non-Linear and the Space-Time Datum problem. Paper presented at the Meeting “Mathematische Methoden der Geodaesie”, Mathematisches Forschungsinstitut Oberwolfach, October 1–7, 1995.Google Scholar
  3. Dermanis, A., (2000). Establishing Global Reference Frames. Nonlinear, Temporal, Geophysical and Stochastic Aspects. IAG Inter. Symp. Banff, Alberta, Canada, July 31–Aug. 4, 2000. In: M.G. Sideris, ed. “Gravity, Geoid and Geodynamics 2000”, IAG Symposia vol. 123, pp. 35–42, Springer, Berlin 2002.Google Scholar
  4. Dermanis, A., (2001). Global Reference Frames: Connecting Observation to Theory and Geodesy to Geophysics. IAG 2001 Scientific Assembly “Vistas for Geodesy in the New Millennium” 2–8 September 2001, Budapest, Hungary.Google Scholar
  5. Dermanis, A., (2003). On the maintenance of a proper reference frame for VLBI and GPS global networks. In: E. Grafarend, F.W. Krumm, V.S. Volker, eds. Geodesy – the Challenge of the 3rd Millennium, pp. 61–68, Springer Verlag, Heidelberg, 2003.Google Scholar
  6. Dermanis, A., (2006). The Definition of a Geophysically Meaningful International Terrestrial Reference System. Problems and Prospects. Presented at the EGU General Assembly, Vienna, April 3–7, 2006.Google Scholar
  7. Drewes, H., (2006a). Implementation of the Kinematical NNR Condition for the Terrestrial Reference Frame. Presented at the EGU General Assembly, Vienna April 3–7, 2006.Google Scholar
  8. Drewes, H., (2006b). Objectives and perspectives for the realization of geodetic reference frames. In this volume.Google Scholar
  9. Engels J., and E. Grafarend (1999). Zwei polare geodätische Bezugsysteme: Der Referenzrahmen der mittleren Oberflächenvortizität und der Tisserand-Referenzrahmen. Mitteilungen der Bundesamtes für Kartographie und Geodäsie, Band 5, 100–109, Frankfurt am Main.Google Scholar
  10. Meissl, P., (1965). Über die innere Genauigkeit dreidimensionaler Punkthaufen. Zeitschrift für Vemessungswesen, 90, 4, 109–118.Google Scholar
  11. Meissl, P., (1969). Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens. Deutsche Geodätische Kommission, Reihe A, Nr 61, 8–21.Google Scholar
  12. Munk, W.H., and G.J.F. MacDonald (1960). The Rotation of the Earth. A Geophysical Discussion. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Dermanis
    • 1
  1. 1.Department of Geodesy and SurveyingAristotle University of Thessaloniki54124 ThessalonikiGreece

Personalised recommendations