Skip to main content

Perception and Developmental Learning of Affordances in Autonomous Robots

  • Conference paper
KI 2007: Advances in Artificial Intelligence (KI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4667))

Included in the following conference series:

Abstract

Recently, the aspect of visual perception has been explored in the context of Gibson’s concept of affordances [1] in various ways. We focus in this work on the importance of developmental learning and the perceptual cueing for an agent’s anticipation of opportunities for interaction, in extension to functional views on visual feature representations. The concept for the incremental learning of abstract from basic affordances is presented in relation to learning of complex affordance features. In addition, the work proposes that the originally defined representational concept for the perception of affordances - in terms of using either motion or 3D cues - should be generalized towards using arbitrary visual feature representations. We demonstrate the learning of causal relations between visual cues and associated anticipated interactions by reinforcement learning of predictive perceptual states. We pursue a recently presented framework for cueing and recognition of affordance-based visual entities that obviously plays an important role in robot control architectures, in analogy to human perception. We experimentally verify the concept within a real world robot scenario by learning predictive visual cues using reinforcement signals, proving that features were selected for their relevance in predicting opportunities for interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson, J.J.: The Ecological Approach to Visual Perception, Boston, Houghton Mifflin (1979)

    Google Scholar 

  2. Neisser, U.: Cognition and Reality. In: Principles and Implications of Cognitive Psychology, Freeman & Co., San Francisco (1976)

    Google Scholar 

  3. Gibson, E.J.: Exploratory behavior in the development of perceiving, acting and the acquiring of knowledge. Annual Review of Psychology 39, 1–41 (1988)

    Article  Google Scholar 

  4. Faillenot, I., Toni, I., Decety, J., Grégoire, M.-C., Jeannerod, M.: Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cerebral Cortex 7, 77–85 (1997)

    Article  Google Scholar 

  5. Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interaction inprimate control of grasping. Neural Networks 11(7-8), 1277–1303 (1998)

    Article  Google Scholar 

  6. Wheeler, S.D., Fagg, H.A., Grupen, R.A.: Learning Prospective Pick and Place Behavior. In: Proc. 2nd International Conference on Development and Learning, June 2002, pp. 197–202. IEEE Computer Society, Cambridge, MA (2002)

    Chapter  Google Scholar 

  7. Paul, F., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning About Objects Through Action - Initial Steps Towards Artificial Cognition. In: ICRA 2003. Proc. IEEE International Conference on Robotics and Automation, Taipei, Taiwan (May 12-17, 2003)

    Google Scholar 

  8. Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: ICRA. Proc. IEEE International Conference on Robotics and Automation, April 18-22, 2005, Barcelona, Spain (2005)

    Google Scholar 

  9. Stark, L., Bowyer, K.W.: Function-based recognition for multiple object categories. Image Understanding 59(10), 1–21

    Google Scholar 

  10. Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer Vision and Image Understanding 62, 64–176 (1995)

    Google Scholar 

  11. Bogoni, L., Bajcsy, R.: Interactive Recognition and Representation of Functionality. Computer Vision and Image Understanding 62(2), 194–214 (1995)

    Article  MATH  Google Scholar 

  12. Edwards, M.G., Humphreys, G.W., Castiello, U.: Motor facilitation following action observation: a behavioural study in prehensile action. Brain Cognition 53, 495–502 (2003)

    Article  Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA (1993)

    Google Scholar 

  15. Cos-Aguilera, I., Cañamero, L., Hayes, G.M., Gillies, A.: Ecological integration of affordances and drives for behaviour selection. In: Bryson, J., et al. (eds.) Proc. Workshop on Modeling Natural Action Selection, pp. 225–228. AISB Press (2005)

    Google Scholar 

  16. Cos-Aguilera, I., Cañamero, L., Hayes, G.M.: Using a SOFM to learn Object Affordances. In: Cos-Aguilera, I. (ed.) WAF 2004. Proc. Workshop of Physical Agents, March 2004, Girona, Catalonia, Spain (2004)

    Google Scholar 

  17. Fritz, G., Paletta, L., Kumar, M., Dorffner, G., Breithaupt, R., Rome, E.: Visual Learning of Affordance based Cues. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 25–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Puterman, M.: Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons, New York (1994)

    MATH  Google Scholar 

  19. Paletta, L., Fritz, G., Seifert, C.: Q-Learning of Sequential Attention for Visual Object Recognition from Informative Local Descriptors. In: ICML 2005. Proc. 22nd International Conference on Machine Learning, Bonn, Germany, August 7-11, 2005, pp. 649–656 (2005)

    Google Scholar 

  20. Draper, B.A.: Modeling Object Recognition as a Markov Decision Process. In: Proc. 13th International Conference on Pattern Recognition 4, 95

    Google Scholar 

  21. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  22. Irran, J., Kintzler, F., Pölz, P.: Grounding Affordances. In: Trappl, R. (ed.) Cybernetics and Systems. Austrian Society for Cybernetic Studies, Vienna (2006)

    Google Scholar 

  23. Ugur, E., Dogar, M.R., Cakmak, M., Sahin, E.: The learning and use of traversability affordance using range images on a mobile robot. In: ICRA 2007. Proc. Internat. Conference on Robotics and Automation, pp. 1721–1726 (2007)

    Google Scholar 

  24. Doherty, P., Merz, T., Rudol, P., Wzorek, M.: Tentative proposal for a formal theory of affordances. Technical Report MACS/4/2.1, Linköpings Universitet, IDA Group, Linköping, Sweden (August 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Hertzberg Michael Beetz Roman Englert

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paletta, L., Fritz, G., Kintzler, F., Irran, J., Dorffner, G. (2007). Perception and Developmental Learning of Affordances in Autonomous Robots. In: Hertzberg, J., Beetz, M., Englert, R. (eds) KI 2007: Advances in Artificial Intelligence. KI 2007. Lecture Notes in Computer Science(), vol 4667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74565-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74565-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74564-8

  • Online ISBN: 978-3-540-74565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics