Skip to main content

Sublithographic Architecture: Shifting the Responsibility for Perfection

  • Chapter
Into the Nano Era

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 106))

  • 1281 Accesses

Abstract

In our conventional, top-down, lithographic model we define a minimum lithographically imageable feature size (e.g., half pitch) and build devices that are multiples of this imageable feature size. Within the limits of this feature size, VLSI layout can perfectly specify the size of features and their locations relative to each other in three dimensions — both in the two-dimensional plane of each lithographic layer and with adequate registration between layers. This gives the designer complete flexibility in the layout of circuit structures as long as she adheres to the minimum imageable and repeatable feature size rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Tan, X. Dai, Y. Li, D. Zhu, J. Mater. Chem. 13, 1069 (2003)

    Article  CAS  Google Scholar 

  2. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nanoletters 4(3), 433 (2004)

    CAS  Google Scholar 

  3. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78(15), 2214 (2001)

    Article  ADS  CAS  Google Scholar 

  4. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Y. Wu, R. Fan, P. Yang, Nanoletters 2(2), 83 (2002)

    CAS  Google Scholar 

  6. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Depper, L.R. Wallenberg, L. Samuelson, Nanoletters 2(2), 87 (2002)

    Google Scholar 

  7. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Sci. 34, 83 (2004)

    Article  CAS  Google Scholar 

  9. M. Ritala, Appl. Surf. Sci. 112, 223 (1997)

    Article  ADS  CAS  Google Scholar 

  10. M. Ritala, K. Kukli, A. Rahtu, P.I. Räisänen, M. Leskelä, T. Sajavaara, J. Keinonen, Science 288, 319 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  11. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nanoletters 3(9), 1255 (2003)

    CAS  Google Scholar 

  12. D. Whang, S. Jin, C.M. Lieber, Nanoletters 3(7), 951 (2003)

    CAS  Google Scholar 

  13. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, J.R. Heath, Science 300, 112 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  15. M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Appl. Phys. Lett. 84(26), 5299 (2004)

    Article  ADS  CAS  Google Scholar 

  16. S.R.J. Brueck, International Trends in Applied Optics (SPIE, Bellingham, 2002), Chap. 5: There are No Fundamental Limits to Optical Lithography, pp. 85–109

    Google Scholar 

  17. J. Bernoulli, Ars Conjectandi (Impensis Thurnisiorum, fratrum, Basel, 1713)

    Google Scholar 

  18. A. DeHon, in Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation, ed. by S.K. Shukla, R.I. Bahar (Kluwer Academic, Boston, 2004), pp. 213–241, Chap. 7.

    Google Scholar 

  19. S. Williams, P. Kuckes, Demultiplexer for a molecular wire crossbar network. United States Patent Number: 6,256, 767, 2001

    Google Scholar 

  20. A. DeHon, P. Lincoln, J. Savage, IEEE Trans. Nanotechnol. 2(3), 165 (2003)

    Article  Google Scholar 

  21. A. DeHon, ACM J. Emerg. Technol. Comput. Syst. 1(2), 109 (2005), http://doi.acm.org/10.1145/1084748.1084750

    Article  MathSciNet  Google Scholar 

  22. J. Chen, M. Reed, A. Rawlett, J. Tour, Science 286, 1550 (1999)

    CAS  Google Scholar 

  23. C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J. Stoddart, J. Heath, Science 289, 1172 (2000)

    ADS  CAS  Google Scholar 

  24. J.M. Tour, L. Cheng, D.P. Nackashi, Y. Yao, A.K. Flatt, S.K.S. Angelo, T.E. Mallouk, P.D. Franzon, J. Am. Chem. Soc. 125(43), 9 (1327) (2003)

    Article  CAS  Google Scholar 

  25. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nanoletters 4(1), 133 (2004)

    CAS  Google Scholar 

  26. Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, J.G. Lu, IEEE Trans. Nanotechnol. 4(2), 238 (2005)

    Article  Google Scholar 

  27. A. DeHon, in Proceedings of the International Symposium on Field-Programmable Gate Arrays, 2005, pp. 127–137

    Google Scholar 

  28. V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs (Kluwer Academic, Norwell, 1999)

    Google Scholar 

  29. D. Chen, J. Cong, M. Ercegovac, Z. Huang, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(10), 1424 (2003)

    Article  Google Scholar 

  30. V. Betz, VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs. http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html, 1999. Version 4.30

    Google Scholar 

  31. V. Betz, J. Rose, in Proceedings of the International Conference on Field-Programmable Logic and Applications, ed. by. W. Luk, P.Y.K. Cheung, M. Glesner, LNCS, vol. 1304 (Springer, New York, 1997), pp. 213–222

    Google Scholar 

  32. V. Betz, J. Rose, FPGA Place-and-Route Challenge. http://www.eeeg.toronto.edu/~vaughn/challenge/challenge.html. 1999

    Google Scholar 

  33. C.L. Brown, U. Jonas, J.A. Preece, H. Ringsdorf, M. Seitz, J.F. Stoddart, Langmuir 16(4), 1924 (2000)

    Article  CAS  Google Scholar 

  34. Y. Chen, G.Y. Jung, D.A.A. Ohiberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams, Nanotechnology 14, 462 (2003)

    Article  ADS  CAS  Google Scholar 

  35. H. Naeimi, A. DeHon, in Proceedings of the International Conference on Field-Programmable Technology (IEEE, New York, 2004), pp. 49–56

    Google Scholar 

  36. A. DeHon, H. Naeimi, IEEE Des. Test Comput. 22(4), 306 (2005)

    Article  Google Scholar 

  37. K. Katsuki, M. Kotani, K. Kobayashi, H. Onodera, in Proceedings of the IEEE Custom Integrated Circuits Conference, 2005, pp. 601–604

    Google Scholar 

  38. D.K. Schroder, J.A. Babcock, J. Appl. Phys. 94(1), 1 (2003)

    Article  ADS  CAS  Google Scholar 

  39. S.E. Schuster, IEEE J. Solid State Circuits 13(5), 698 (1978)

    Article  Google Scholar 

  40. R.W. Hamming, Bell Syst. Tech. J. 29(2), 147 (1950)

    MathSciNet  Google Scholar 

  41. G.C. Clark Jr., J.B. Cain, Error-Correction Coding for Digital Communications (Plenum, New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeHon, A. (2009). Sublithographic Architecture: Shifting the Responsibility for Perfection. In: Huff, H.R. (eds) Into the Nano Era. Springer Series in Materials Science, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74559-4_11

Download citation

Publish with us

Policies and ethics