Skip to main content

Defects in Anatase Titanium Dioxide

  • Chapter

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 9))

Transition metal oxides have been attracting fundamental and technological interests because their various properties are influenced by many factors such as the number of d-electrons on transition metal ions, crystalline structures, oxygen defects and doped impurities. Elucidation of influence on properties from the factors will lead us to discovery of novel materials. From this standpoint of view, titanium dioxide is one of the prototypes. Titanium dioxide has no d-electron by itself, so that the number of d-electron can be controllable by doping of transition metals. Three crystalline modifications of titanium dioxide, rutile, anatase, and brookite are known well, so that structural dependence on properties can be discussed. It is expected that defects and impurities are also dominant over optical and electrical responses, such as transmittance, photoluminescence and conductivity, which is the same as conventional semiconductors. Titanium dioxide, moreover, is a material which has been used for a long time in a wide range of common and high technique applications because of its moderate price, chemical stability and nontoxicity. Recent topical application is a photocatalyst [1]. Photocatalytic reaction of titanium dioxide is a redox reaction of reactants adsorbed on the surface and it involves photogeneration, migration, and trapping of charge carriers. In these processes, the photogeneration and the migration of carriers are crucial processes to govern inherent activity of the material as a photocatalyst. It can be easily imagined that the factors in nanoscale size have some influence on the behavior of the carriers and the catalytic activity. In fact, anatase has higher photocatalytic activity than rutile because of a difference in Fermi energy [2] and the charge carrier in anatase thin film has a higher mobility than that of rutile [3]. Many approaches to raise photocatalytic activity under visible light have been done; for example transition metal doping [4,5], nitrogen doping [6], and oxygen defect [7]. Their results indicate that optical absorption in the visible region is controllable by doping of impurities. Among three crystalline modifications of titanium dioxide, only rutile crystals have been obtained by crystallization of the substance from its own melt or from a solution in a melt [8]. In contrast to extensive studies for rutile, fundamental optical and electronic properties of anatase which is low temperature modification have not been well understood. To reveal fundamental properties of anatase titanium dioxide, it is indispensable to investigate defect states in it. Recently, anatase titanium dioxide single crystals can be grown by gas phase reaction [9]. As-grown anatase crystals generally exhibit pale blue color in spite of the wide bandgap of about 3.3eV. This suggests the presence of some defects in the as-grown crystals. On this report, it is shown that several colors in anatase can be available by defects controlled in nanoscale, and some electrical properties are controllable by photoirradiation, which implies the possibility of nanoscale doping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  PubMed  ADS  CAS  Google Scholar 

  2. H.P. Maruska, A.K. Ghosh, Sol. Energy 20, 493 (1978)

    Article  Google Scholar 

  3. H. Tang, K. Prasad, R. Sanjinés, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994)

    Article  ADS  CAS  Google Scholar 

  4. A.K. Ghosh, H.P. Maruska, J. Electrochem. Soc. 124, 1516 (1977)

    Article  CAS  Google Scholar 

  5. M. Anpo, Catal. Surv. Jpn. 1, 169 (1997)

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, Y. Taga, Science 293, 269 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. R.G. Breckenridge, W.R. Hosler, Phys. Rev. 91, 793 (1953)

    Article  ADS  CAS  Google Scholar 

  8. J.R. Berkes, W.B. White, R. Roy, J. Appl. Phys. 36, 3276 (1965)

    Article  ADS  CAS  Google Scholar 

  9. H. Berger, H. Tang, F. Lévy, J. Cryst. Growth 130, 108 (1993)

    Article  ADS  CAS  Google Scholar 

  10. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  CAS  Google Scholar 

  11. I.N. Anikin, I.I. Naumova, G.V. Rumyantseva, Kristallografiya 10, 230 (1965) (Sov. Phys. Crystallogr. 10, 172 (1965))

    CAS  Google Scholar 

  12. G.D. Davtyan, Kristallografiya 21, 869 (1976) (Sov. Phys. Crystallogr. 21, 499 (1976))

    CAS  Google Scholar 

  13. C.H.R. Rao, A. Turner, J.M. Honig, J. Phys. Chem. Solids 11, 173 (1959)

    Article  ADS  CAS  Google Scholar 

  14. F. Izumi, H. Kodama, A. Ono, J. Crystal Growth 47, 139 (1979)

    Article  ADS  CAS  Google Scholar 

  15. N. Hosaka, T. Sekiya, C. Satoko, S. Kurita, J. Phys. Soc. Jpn. 66, 877 (1997)

    Article  ADS  CAS  Google Scholar 

  16. T. Sekiya, M. Igarashi, K. Ichimura, S. Kurita, J. Phys. Chem. Solids 61, 1237 (2000)

    Article  ADS  CAS  Google Scholar 

  17. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  ADS  Google Scholar 

  18. D.D. Mulmi, T. Sekiya, N. Kamiya, S. Kurita, T. Kodaira, Y. Murakami, J. Phys. Chem. Solids 65, 1181 (2004)

    Article  ADS  CAS  Google Scholar 

  19. T. Sekiya, T. Yagisawa, N. Kamiya, D.D. Mulmi, S. Kurita, Y. Murakami, T. Kodaira, J. Phys. Soc. Jpn. 73, 703 (2004)

    Article  ADS  CAS  Google Scholar 

  20. H. Tang, F. Lévy, H. Berger, P.E. Schmid, Phys. Rev. B 52, 7771 (1995)

    Article  ADS  CAS  Google Scholar 

  21. J.D. Dow, D. Redfield, Phys. Rev. B 5, 594 (1972)

    Article  ADS  Google Scholar 

  22. H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31, 342 (1971)

    Article  ADS  CAS  Google Scholar 

  23. K. Cho, Y. Toyozawa, J. Phys. Soc. Jpn. 30, 1555 (1971)

    Article  ADS  CAS  Google Scholar 

  24. M. Schrieber, Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1528 (1982)

    Article  ADS  Google Scholar 

  25. A. Fahmi, C. Minot, B. Silvi, M. Causa, Phys. Rev. B 47, 11717 (1993)

    Article  ADS  CAS  Google Scholar 

  26. S.D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995)

    Article  ADS  CAS  Google Scholar 

  27. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze, Jpn. J. Appl. Phys. 39 L847 (2000)

    Article  ADS  CAS  Google Scholar 

  28. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freema, Phys. Rev. B 61 7459 (2000)

    Article  ADS  CAS  Google Scholar 

  29. N. Hosaka, T. Sekiya, S. Kurita, J. Luminescence 74, 874 (1997)

    Article  Google Scholar 

  30. H. Tang, H. Berger, P.E. Schmid, F. Levy, G. Burri, Solid State Commum. 87, 847 (1993)

    Article  ADS  CAS  Google Scholar 

  31. M. Watanabe, S. Sasaki, T. Hayashi, J. Luminescence 87–89, 1234 (2000)

    Article  Google Scholar 

  32. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Lévy, J. Appl. Phys. 75, 633 (1994)

    Article  ADS  CAS  Google Scholar 

  33. F.J. Dyson, Phys. Rev. 98, 349 (1955)

    Article  MATH  ADS  CAS  Google Scholar 

  34. G. Feher, A.F. Kip, Phys. Rev. 98, 337 (1955)

    Article  ADS  CAS  Google Scholar 

  35. C. Itoh, A. Wada, Phys. Stat. Sol. C 2, 629 (2005)

    Article  CAS  Google Scholar 

  36. S.J. Chung, O.H. Cha, Y.S. Kim, C.H. Hong, H.J. Lee, J.O. White, E.K. Suh, J. Appl. Phys. 89, 5454 (2001)

    Article  ADS  CAS  Google Scholar 

  37. M.T. Hirsch, J.A. Wolk, W. Walukiewicz, E.E. Haller, Appl. Phys. Lett. 71, 1098 (1997)

    Article  ADS  CAS  Google Scholar 

  38. T. Sekiya, H. Takeda, N. Kamiya, S. Kurita, T. Kodaira, Phys. Stat. Sol. C 3, 3603 (2006)

    Article  CAS  Google Scholar 

  39. P. Meriaudeau, M. Che, P.C. Gravelle, S.J. Teichner, Bull. Soc. Chim. Fr. 13 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sekiya, T., Kurita, S. (2008). Defects in Anatase Titanium Dioxide. In: Ohno, K., Tanaka, M., Takeda, J., Kawazoe, Y. (eds) Nano- and Micromaterials. Advances in Materials Research, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74557-0_4

Download citation

Publish with us

Policies and ethics