Skip to main content

Thermodynamic Properties of Materials Using Lattice-Gas Models with Renormalized Potentials

  • Chapter
Book cover Nano- and Micromaterials

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 9))

To study thermodynamic properties of materials, lattice model simulation such as lattice Monte Carlo (MC) simulation is one of the simple and fast method. One advantage of the method is that it can treat larger systems both in time scale and in spatial size compared with atomic-scale molecular dynamics (MD) simulations so that it can treat thermodynamic equilibrium or diffusion phase transition phenomena. However, it has limitation in the description of disordered or liquid phases because displacement of atoms from regular lattice points that may be important at high temperatures could not be considered. That is, lattice models neglect the vibration entropy as well as the elastic energy. The shortcomings lead to overestimation of the phase transition temperatures and underestimation of the width of single-phase fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ohno, The Sci. Rep. Res. Inst. Tohoku Univ. A 43, 17 (1997)

    CAS  Google Scholar 

  2. K. Ohno, K. Esfarjani, Y. Kawazoe, Solid-State Sciences, Vol. 188, (Springer, Berlin Heidelberg New York, 1999)

    Google Scholar 

  3. R. Sahara, H. Mizuseki, K. Ohno, S. Uda, T. Fukuda, Y. Kawazoe, J. Chem. Phys. 110, 9608 (1999)

    Article  ADS  CAS  Google Scholar 

  4. R. Sahara, H. Mizuseki, K. Ohno, H. Kubo, Y. Kawazoe, J. Cryst. Growth 229, 610 (2001)

    Article  ADS  CAS  Google Scholar 

  5. J. Tersoff, Phys. Rev. B 38, 9902 (1998)

    Article  ADS  Google Scholar 

  6. H. Ichikawa, R. Sahara, H. Mizuseki, K. Ohno, Y. Kawazoe: Mater. Trans. JIM 40, 914 (1999)

    Google Scholar 

  7. R. Sahara, H. Ichikawa, H. Mizuseki, K. Ohno, H. Kubo, Y. Kawazoe, J. Chem. Phys. 120, 9297 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50, 45 (1984)

    Article  ADS  CAS  Google Scholar 

  9. G.J. Ackland, V. Vitek, Phys. Rev. B 41, 10324 (1990)

    Article  ADS  CAS  Google Scholar 

  10. G.J. Ackland, G. Tichy, V. Vitek, M.W. Finnis, Philos. Mag. A 56, 735 (1987)

    Article  ADS  CAS  Google Scholar 

  11. Hui-fang Deng, David J. Bacon, Phys. Rev. B 48, 10022 (1993)

    Article  Google Scholar 

  12. R. Sahara, H. Mizuseki, K. Ohno, Y. Kawazoe, Mater. Trans. 46, 1127 (2005)

    Article  CAS  Google Scholar 

  13. F. Ducastelle, F. Cyrot-Lackmann, J. Phys.Chem. Solids. 31, 1295 (1970)

    Article  ADS  CAS  Google Scholar 

  14. D. Tomanek, A.A. Aligia, C.A. Balseiro, Phys. Rev. B 32, 5051 (1985)

    Article  ADS  CAS  Google Scholar 

  15. V. Rosato, M. Guillope, B. Legrand, Phil. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

  16. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Y. Misumi, Graduation thesis of Yokohama National University (2006)

    Google Scholar 

  18. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 127 (1953)

    Article  Google Scholar 

  19. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 2, Chap. 11, ed. by C. Domb (M.S. Green Academic, London, 1972)

    Google Scholar 

  20. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  CAS  Google Scholar 

  21. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986)

    Article  PubMed  ADS  CAS  Google Scholar 

  22. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  23. H. Ogawa, Y. Waseda, Z. Naturforsch., A: Phys. Sci. 49A, 987 (1994)

    Google Scholar 

  24. L.K. Runnels, in Phase Transition and Critical Phenomena, Vol. 2, Chap. 8, ed. by C. Domb (M.S. Green, Academic, London, 1972)

    Google Scholar 

  25. S.J. Cook, P. Clancy, Phys. Rev. B 47, 7686 (1993)

    Article  ADS  CAS  Google Scholar 

  26. W. Schockey, J. Chem. Phys. 6, 130 (1938)

    Article  ADS  Google Scholar 

  27. Y.Y. Li, J. Chem. Phys. 17, 447 (1949)

    Article  ADS  CAS  Google Scholar 

  28. R. Kikuchi, Phys. Rev. 81, 988 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. J.M. Sanches, D. de Fontaine, Phys. Rev. B 17, 2926 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Binder, Phys. Rev. Lett. 45, 811 (1980)

    Article  ADS  CAS  Google Scholar 

  31. T. Horiuchi, S. Takizawa, T. Suzuki, T. Mohri, Metall. Mater. Trans. 26A, 11 (1995)

    Article  CAS  Google Scholar 

  32. K. Terakura, T. Oguchi, T. Mohri, K. Watanabe, Phys. Rev. B 35, 2169 (1987)

    Article  ADS  CAS  Google Scholar 

  33. J.W.D. Connolly, A.R. Williams, Phys. Rev. B 27, 5169 (1983)

    Article  ADS  CAS  Google Scholar 

  34. Y.S. Touloukian et al. (eds.), Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Metal, Vol. 12, (IFI/PLENUM, New York, 1972)

    Google Scholar 

  35. J.M. Holender, J. Phys. 2, 1291 (1990)

    CAS  Google Scholar 

  36. J.M. Holender, Phys. Rev. B 41, 8054 (1990)

    Article  ADS  CAS  Google Scholar 

  37. T.B. Massalski (ed.), Binary Alloy Phase Diagrams, (Metals Park, OH), p. 254 (1986)

    Google Scholar 

  38. T.B. Massalski (ed.), Binary Alloy Phase Diagrams, (Metals Park, OH), (1986), p. 1093

    Google Scholar 

  39. T. Mohri, Y. Chen, Mater. Trans. 43, 2104 (2002)

    Article  CAS  Google Scholar 

  40. V. Morruzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988)

    Article  ADS  Google Scholar 

  41. G. Kresse, J. Fürthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  CAS  Google Scholar 

  42. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  43. K. Ohno, Trans. Mater. Res. Soc. Jpn. 29, 3787 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sahara, R., Mizuseki, H., Ohno, K., Kawazoe, Y. (2008). Thermodynamic Properties of Materials Using Lattice-Gas Models with Renormalized Potentials. In: Ohno, K., Tanaka, M., Takeda, J., Kawazoe, Y. (eds) Nano- and Micromaterials. Advances in Materials Research, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74557-0_11

Download citation

Publish with us

Policies and ethics