Feature Correlation Filter for Face Recognition

  • Xiangxin Zhu
  • Shengcai Liao
  • Zhen Lei
  • Rong Liu
  • Stan Z. Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


The correlation filters for pattern recognition, have been extensively studied in the areas of automatic target recognition(ATR) and biometrics. Whereas the conventional correlation filters perform directly on image pixels, in this paper, we propose a novel method, called “feature correlation filter (FCF)”, by extending the concept of correlation filter to feature spaces. The FCF preserves the benefits of conventional correlation filters, i.e., shift-invariant, occlusion-insensitive, and closed-form solution, and also inherits virtues of the feature representations. Moreover, since the size of feature is often much smaller than the size of image, the FCF method can significantly reduce the storage requirement in recognition system. The comparative results on CMU-PIE and the FRGC2.0 database show that the proposed FCFs can achieve noteworthy performance improvement compared with their conventional counterpart.


Feature correlation filters Correlation filters MACE Face recognition 


  1. 1.
    Rentzeperis, E., Stergiou, A., Pnevmatikakis, A., Polymenakos, L.: Impact of Face Registration Errors on Recognition, In: AIAI 2006. Presented at Artificial Intelligence Applications and Innovations (2006)Google Scholar
  2. 2.
    Vanderlugt, A.: Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory 10, 139–145 (1964)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. Pattern Analysis and Machine Intelligence, IEEE Transactions 19, 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Savvides, M., Kumar, B.V.K.V., Khosla, P.K.: Corefaces - Robust shift invariant PCA based correlation filter for illumination tolerant face recognition. IEEE Comp. Vision and Patt. Rec (CVPR) (2004)Google Scholar
  5. 5.
    Kumar, B.V.K.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition. Cambridge Univ. Press, Cambridge, UK (2005)Google Scholar
  6. 6.
    Vijara Kumar, B.V.K.: Minimum variance synthetic discriminant functions. J. Opt. Soc. Amer. A 3, 1579–1584 (1986)Google Scholar
  7. 7.
    Mahalanobis, A., Vijaya Kumar, B.V.K., Song, S., Sims, S.R.F., Epperson, J.: Unconstrained correlation filters. Appl. Opt. 33, 3751–3759 (1994)CrossRefGoogle Scholar
  8. 8.
    Mahalanobis, A., Kumar, B.V.K.V., Casasent, D.: Minimum average correlation energy filters. Appl. Opt. 26, 3630–3633 (1987)Google Scholar
  9. 9.
    Savvides, M., Kumar, B.V.K.V.: Illumination normalization using logarithm transforms for face authentication. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Vijaya Kumar, B.V.K., Savvides, M., Xie, C.: Correlation Pattern Recognition for Face Recognition. Proceedings of the IEEE 94, 1963–1976 (2006)CrossRefGoogle Scholar
  11. 11.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (CVPR) (2001)Google Scholar
  12. 12.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 72–86 (1991)CrossRefGoogle Scholar
  13. 13.
    Bartlett, M.S., Lades, H.M., Sejnowski, T.J.: Independent component representations for face recognition. In: Proceedings of the SPIE, Conference on Human Vision and Electronic Imaging (1998)Google Scholar
  14. 14.
    Wiskott, L., Fellous, J., Kruger, N., malsburg, C.V.: Face recognition by elastic bunch graph matching. Pattern Analysis and Machine Intelligence, IEEE Transactions 19, 775–779 (1997)CrossRefGoogle Scholar
  15. 15.
    Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces, Robotics Institute, Carnegie Mellon University CMU-RI-TR-01-02 (2001)Google Scholar
  16. 16.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Jin, C., Hoffman, K., Marques, J., Jaesik, M., Worek, W.: Overview of the face recognition grand challenge. In: Proc. IEEE Conf. Comp. Vision Pattern Rec (CVPR) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiangxin Zhu
    • 1
  • Shengcai Liao
    • 1
  • Zhen Lei
    • 1
  • Rong Liu
    • 1
  • Stan Z. Li
    • 1
  1. 1.Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100080 BeijingChina

Personalised recommendations