Outdoor Face Recognition Using Enhanced Near Infrared Imaging

  • Dong Yi
  • Rong Liu
  • RuFeng Chu
  • Rui Wang
  • Dong Liu
  • Stan Z. Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


In this paper, we present a robust and accurate system for outdoor (as well as indoor) face recognition, based on a recently developed enhanced near-infrared (ENIR) imaging device. Using a narrow band NIR laser generator instead of LED lights for active frontal illumination, the ENIR device can provide face images of good quality even under sunlight. Experiments show that the ENIR system performs similarly to the existing NIR system when used indoors, but outperforms it significantly outdoors especially under sunlight.


Face recognition near-infrared (NIR) imaging device illumination outdoor statistical learning 


  1. 1.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: A literature survey. In: ACM Computing Surveys, pp. 399–458. ACM Press, New York (2003)Google Scholar
  2. 2.
    NIST: Face Recognition Vendor Tests (FRVT)
  3. 3.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  4. 4.
    Shashua, A., Raviv, T.R.: The quotient image: Class based re-rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 129–139 (2001)CrossRefGoogle Scholar
  5. 5.
    Wang, H.T., Li, S.Z., Wang, Y.S.: Generalized quotient image. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 498–505. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Bowyer, K.W., Chang, Flynn, P.J.: A survey of 3D and multi-modal 3d+2d face recognition. In: Proceedings of International Conference Pattern Recognition, pp. 358–361 (2004)Google Scholar
  7. 7.
    Kong, S.G., Heo, J., Abidi, B., Paik, J., Abidi, M.: Recent advances in visual and infrared face recognition - A review. Computer Vision and Image Understanding 97(1), 103–135 (2005)CrossRefGoogle Scholar
  8. 8.
    Li, S.Z., et al.: AuthenMetric F1: A Highly Accurate and Fast Face Recognition System. In: ICCV 2005 - Demos (2005)Google Scholar
  9. 9.
    Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near-infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (Special issue on Biometrics: Progress and Directions) (2007)Google Scholar
  10. 10.
    AuthenMetric and CASIA: An Image Acquisition Aparatus, and Method and System for Its applications in Face Recognition. Patent Application No.200710062725.3 (2007)Google Scholar
  11. 11.
    Hizem, W., Krichen, E., Ni, Y., Dorizzi, B., Garcia-Salicetti, S.: Specific sensors for face recognition. In: Proceedings of IAPR International Conference on Biometric, vol. 3832, pp. 47–54 (2006)Google Scholar
  12. 12.
    Dowdall, J., Pavlidis, I., Bebis, G.: Face detection in the near-IR spectrum. Image and Vision Computing 21, 565–578 (2003)CrossRefGoogle Scholar
  13. 13.
    Zou, X., Kittler, J., Messer, K.: Ambient illumination variation removal by active near-ir imaging. In: Proceedings of IAPR International Conference on Biometric, pp. 19–25 (2006)Google Scholar
  14. 14.
    Li, S.Z., Zhang, Z.Q.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  15. 15.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Proceedings of the European Conference on Computer Vision, Prague, Czech, pp. 469–481 (2004)Google Scholar
  16. 16.
    Moghaddam, B., Nastar, C., Pentland, A.: A Bayesian similarity measure for direct image matching. Media Lab Tech Report No.393, MIT (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dong Yi
    • 1
  • Rong Liu
    • 1
  • RuFeng Chu
    • 1
  • Rui Wang
    • 1
  • Dong Liu
    • 1
  • Stan Z. Li
    • 1
  1. 1.Center for Biometrics and Security Research &, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080China

Personalised recommendations