Bayesian Hill-Climbing Attack and Its Application to Signature Verification

  • Javier Galbally
  • Julian Fierrez
  • Javier Ortega-Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


A general hill-climbing attack algorithm based on Bayesian adaption is presented. The approach uses the scores provided by the matcher to adapt a global distribution computed from a development set of users, to the local specificities of the client being attacked. The proposed attack is evaluated on a competitive feature-based signature verification system over the 330 users of the MCYT database. The results show a very high efficiency of the hill-climbing algorithm, which successfully bypassed the system for over 95% of the attacks.


Biometric System Successful Attack False Acceptance Rate False Rejection Rate False Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans. on Information Forensics and Security 1, 125–143 (2006)CrossRefGoogle Scholar
  2. 2.
    Ratha, N., Connell, J., Bolle, R.: An analysis of minutiae matching strength. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 223–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    van der Putte, T., Keuning, J.: Biometrical fingerprint recognition: don’t get your fingers burned. In: Proc. IFIP, pp. 289–303 (2000)Google Scholar
  4. 4.
    Galbally, J., Fierrez, J., et al.: On the vulnerability of fingerprint verification systems to fake fingerprint attacks. In: Proc. IEEE of ICCST, pp. 130–136. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  5. 5.
    Pacut, A., Czajka, A.: Aliveness detection for iris biometrics. In: Proc. ICCST, pp. 122–129 (2006)Google Scholar
  6. 6.
    Soutar, C.: Biometric system security,
  7. 7.
    Adler, A.: Sample images can be independently restored from face recognition templates. In: Proc. CCECE, vol. 2, pp. 1163–1166 (2003)Google Scholar
  8. 8.
    Uludag, U., Jain, A.K.: Attacks on biometric systems: a case study in fingerprints. In: Proc. SPIE, vol. 5306, pp. 622–633 (2004)Google Scholar
  9. 9.
    Martinez-Diaz, M., Fierrez, J., et al.: Hill-climbing and brute force attacks on biometric systems: a case study in match-on-card fingerprint verification. In: Proc. IEEE of ICCST, pp. 151–159. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester (2001)zbMATHGoogle Scholar
  11. 11.
    Ortega-Garcia, J., Fierrez-Aguilar, J., et al.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vis. Image Signal Process. 150, 395–401 (2003)CrossRefGoogle Scholar
  12. 12.
    Fierrez-Aguilar, J., Nanni, L., et al.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38, 2270–2285 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Javier Galbally
    • 1
  • Julian Fierrez
    • 1
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometric Recognition Group–ATVS, EPS, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 11, 28049 MadridSpain

Personalised recommendations