A New Approach to Fake Finger Detection Based on Skin Elasticity Analysis

  • Jia Jia
  • Lianhong Cai
  • Kaifu Zhang
  • Dawei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


This work introduces a new approach to fake finger detection, based on the analysis of human skin elasticity. When a user puts a finger on the scanner surface, a sequence of fingerprint images which describes the finger deformation process is captured. Then two features which represent the skin elasticity are extracted from the image sequence: 1) the correlation coefficient of the fingerprint area and the signal intensity; 2) the standard deviation of the fingerprint area extension in x and y axes. Finally the Fisher Linear Discriminant is used to discriminate the finger skin from other materials such as gelatin. The experiments carried out on a dataset of real and fake fingers show that the proposed approach and features are effective in fake finger detection.


Fingerprint Image Average Signal Intensity Skin Elasticity Fisher Linear Discriminant Extra Hardware 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Newham, E.: The Biometric Report. SJB Services, New York (1995)Google Scholar
  2. 2.
    Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of Artificial ”Gummy” Fingers on Fingerprint Systems. In: Proceeding of SPIE, Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677, pp. 275–289 (2002)Google Scholar
  3. 3.
    Putte, T.v.D., Keuning, J.: Biometrical Fingerprint Recognition: Don’t Get Your Fingers Burned. In: Proceeding of IFIP TC8/WG8.8 Fourth Working Conference on Smart Card Research and Advanced Applications, pp. 289–303 (2000)Google Scholar
  4. 4.
    Derakhshani, R., Schuckers, S.A.C., Hornak, L., O’Gorman, L.: Determination of Vitality from a Non-invasive Biomedical Measurement for Use in Fingerprint Scanners. Pattern Recognition 36(2), 383–396 (2003)CrossRefGoogle Scholar
  5. 5.
    Schuckers, S.A.C.: Spoofing and Anti-spoofing Measures. Information Security Technical Report 7(4), 56–62 (2002)CrossRefGoogle Scholar
  6. 6.
    Baldisserra, D., Franco, A., Maio, D., Maltoni, D.: Fake Fingerprint Detection by Odor Analysis. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 265–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Parthasaradhi, S.T.V., Derakhshani, R., Hornak, L.A., Schuckers, S.A.C.: Time-Series Detection of Perspiration as a Liveness Test in Fingerprint Devices. IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews 35(3) (2005)Google Scholar
  8. 8.
    Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: A New Approach to Fake Finger Detection Based on Skin Distortion. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 221–228. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cappelli, R., Maio, D., Maltoni, D.: Modeling Plastic Distortion in Fingerprint Images. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 369–376. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7(partII), 179–188 (1936)Google Scholar
  11. 11.
    Sandstrom, M.: Liveness Detection in Fingerprint Recognition Systems. Master thesis (2004),
  12. 12.
    International Biometric Group: Optical-silicon-ultrasound. White paper (2004), Available at
  13. 13.
    Lapsley, P.D., Lee, J.A., Pare Jr., D.F., Hoffman, N.: Anti-fraud biometric sensor that accurately detects blood flow. SmartTouch, LLC., US Patent #5737439 (April 1998)Google Scholar
  14. 14.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)zbMATHGoogle Scholar
  15. 15.
    Woodward Jr., J.D., Orlands, N.M., Higgins, P.T.: Biometrics: Identity assurance in the information age. McGraw-Hill/Osborne, Berkeley, California, USA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jia Jia
    • 1
  • Lianhong Cai
    • 1
  • Kaifu Zhang
    • 1
  • Dawei Chen
    • 1
  1. 1.Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education, Beijing 100084P.R. China

Personalised recommendations