Biometric Template Classification: A Case Study in Iris Textures

  • Edara Srinivasa Reddy
  • Chinnam SubbaRao
  • Inampudi Ramesh Babu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Most of the biometric authentication systems store multiple templates per user to account for variations in biometric data. Therefore, these systems suffer from storage space and computation overheads. To overcome this problem the paper proposes techniques to automatically select prototype templates from iris textures. The paper has two phases: one is to find the feature vectors from iris textures that have less correlation and the second to calculate DU measure. Du measure is an effective measure of the similarity between two iris textures, because it takes into consideration three important perspectives: a) information, b) angle and e) energy. Also, gray level co occurrence matrix is used to find the homogeneity and correlation between the textures.


Shaker iris Jewel iris Flower iris Stream iris gray level co-occurrence matrix Spectral information divergence Spectral angle mapper DU measure 


  1. 1.
    NIST: Advanced Encryption Standard, AES (2001),
  2. 2.
    Heijmans, H.: Morphological Image Operators. AcademiPress, San Diego (1994)zbMATHGoogle Scholar
  3. 3.
    Juels, A., Sudan, M.: A Fuzzy Vault Scheme. In: Lapidothand, A., Teletar, E. (eds.) Proc. IEEE Int’l. Symp. Inf. Theory, p. 408 (2002)Google Scholar
  4. 4.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Addison-Wesley, Reading (1992)Google Scholar
  5. 5.
    De Mira Jr., J., Mayer, J.: Image Feature Extraction for application of Biometric Identification of Iris – A Morphological Approach. In: Proc. IEEE. Int’l. Symp. on Computer Graphics and Image processing, SIBGRAPI 2003 (2003)Google Scholar
  6. 6.
    Uludag, U., Jain, A.K.: Fuzzy Finger Print Vault. In: Proc. Workshop: Biometrics: Challenges Arising from Theory to practice, pp. 13–16. W.H. Press, New York (2004)Google Scholar
  7. 7.
    Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Teo, C.C., Ewe, H.T.: An efficient One Dimensional Fractal Analysis for Iris Recognition, WSCG 2005, January 31-February 4, 2005, Plzen, Czech Republic (2005)Google Scholar
  9. 9.
    LiMA,Tieniu: Efficient Iris Recognition by Characterizing Key Local Variations, IEEE trans., Image Processing (2004)Google Scholar
  10. 10.
    Ives, R., Etter, D., Du, Y.: Iris Pattern Extraction using Bit Planes and Standard Deviations. In: IEEE conference on Signals, systems and computers (2004)Google Scholar
  11. 11.
    Tian, Q.-C., Pan, Q., Cheng, Y.-M.: Fast algorithm and application of Hough Transform in iris segmentation. In: Proceedings of third IEEE conference on machine learning and Cybernetics, Shangai, pp. 26–29 (2004)Google Scholar
  12. 12.
    Sharma, M., Markou, M., Singh, S.: Evaluaion of Texture Methods For Image Analaysis, pattern recognition lettersGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Edara Srinivasa Reddy
    • 1
  • Chinnam SubbaRao
    • 2
  • Inampudi Ramesh Babu
    • 2
  1. 1.Research Scholar 
  2. 2.Professor, Department of Computer Science, Acharya Nagarjuna Univerity, Guntur, A.PIndia

Personalised recommendations