Skip to main content

The Role of Soil Microbial Volatile Products in Community Functional Interactions

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

  • 2855 Accesses

Soil ecosystems are a complex of biotic and abiotic components.

There are a great many different types of soils with a wide range of different textures. Type and texture are determined by the relative proportions of organic material, from living and dead organisms, and mineral material, including sand, silt and clay. Texture and structure affect the amount and size of pore spaces in the soil, which contribute between 5 and 35% of the soil volume. These pore spaces are occupied by air and water, and may be connected to the troposphere and contain a similar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alstrom S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol of activity against Verticillium dahliae. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Azcon-Aguiler C, Barea J-M (1985) Effect of soil micro-organisms on formation of vesicular-arbuscular mycorrhizas. Trans Br Mycol Soc 84:536–537

    Article  Google Scholar 

  • Azcon-Aguiler C, Diaz-Rodriguez CM, Barea J-M (1986) Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mossae. Trans Br Mycol Soci 86:337–340

    Article  Google Scholar 

  • Bruce A, Wheatley RE, Humphris SN, Hackett CA, Florence M (2000) Production of volatile organic compounds by Trichoderma spp. in media containing different amino acids and their effect on selected wood decay fungi. Hölzforschung 54:481–486

    Article  CAS  Google Scholar 

  • Bruce A, Stewart D, Verrall S, Wheatley RE (2003) Effect of volatiles from bacteria and yeast on the growth and pigmentation of sap-stain fungi. Int Biodeterior Biodegradation 51:101–108

    Article  CAS  Google Scholar 

  • Bruce A, Verrall S, Hackett CA, Wheatley RE (2004) Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Hölzforschung 58:193–198

    Article  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Article  PubMed  CAS  Google Scholar 

  • De Boer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot 23:442–447

    CAS  Google Scholar 

  • Defago G, Berling C-H, Burger U, Haas RJ, Kahr G, Keel C, Voisard C, Wirthner P (1990) Suppression of black root rot of tobacco and other diseases by strain Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D, Cook RJ, Henis Y, KO WH, Rovira AD, Schippers B, Scott PR (eds) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 93–108

    Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Epstein L, Lockwood JL (1984) Effect of soil microbiota on germination of Bipolaris victoriae conidia. Trans Br Mycol Soc 82:63–69

    Article  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fiddaman DJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126

    PubMed  CAS  Google Scholar 

  • Fiddaman DJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol 76:396–405

    Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazzari A, Defago G, Bonfante P, Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851–1864

    Article  PubMed  CAS  Google Scholar 

  • Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can J Microbiol 36:61–64

    Article  PubMed  CAS  Google Scholar 

  • Griebel GE, Owens LD (1972) Nature of the transient activation of soil microorganisms by ethanol or acetaldehyde. Soil Biol Biochem 4:1–8

    Article  CAS  Google Scholar 

  • Griffin GJ (1962) Production of a fungistatic effect by soil microflora in autoclaved soil. Phytopathology 52:90–91

    Google Scholar 

  • Heilman-Clausen J, Boddy L (2005) Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. Microb Ecol 49:399–406

    Article  Google Scholar 

  • Hora TS, Baker R (1972) Soil fungistasis: microflora producing a volatile inhibitor. Trans Br Mycol Soc 59:491–500

    Article  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology 78:1075–1078

    Article  CAS  Google Scholar 

  • Humphris SN, Bruce A, Wheatley RE (2000) Volatile inhibition of Serpula lacrymans by Trichoderma spp. In: Proceedings 31st annual meeting of the international research group on wood preservation, Hawaii, USA

    Google Scholar 

  • Humphris N, Wheatley RE, Bruce A (2001) The effects of specific volatile organic compounds produced by Trichoderma spp. on the growth of wood decay fungi. Hölzforschung 55:233–237

    Article  CAS  Google Scholar 

  • Humphris SN, Bruce A, Buultjens E, Wheatley RE (2002) The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219

    Article  PubMed  CAS  Google Scholar 

  • Lockwood JL, Lingappa BT (1963) Fungistatic activity of autoclaved soil inoculated with soil micro-organisms. Phytopathology 53:917–920

    Google Scholar 

  • Mackie A, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  • McCaig AE, Glover EA, Prosser JI (1999) Molecular analysis of bacterial community structure in unimproved and improved grass pastures. Appl Environ Microbiol 65:1721–1730

    PubMed  CAS  Google Scholar 

  • Mitchell SM, Davidson J, Wheatley RE, McNichol J, Daniell TJ, (2004) Relationship between soil nitrification activity and population dynamics. In: Proceedings of 10th international symposium on microbial ecology, Cancun, Mexico, August 2004, p 307

    Google Scholar 

  • Payne C, Bruce A, Staines HY (2000) Yeast and bacteria as biological control agents against fungal discolouration of Pinus sylvestris blocks in laboratory-based tests and the role of antifungal volatiles. Holzforschung 54:563–569

    Article  CAS  Google Scholar 

  • Rothrock CS, Gottleib D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1477

    Google Scholar 

  • Shaukat SS, Siddiqui IA (2003) Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean. J Appl Microbiol 95:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan U, Staines HJ, Bruce A (1992) Influence of media type on antagonistic modes of Trichoderma spp. against wood decay basidiomycetes. Mater Org 27:301–321

    Google Scholar 

  • Stahl PD, Parkin TB (1999) Microbial production of volatile organic compounds in soil microcosms. Soil Sci Soc Am J 60:821–828

    Google Scholar 

  • Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms CRC Crit Rev 4:333–381

    Article  CAS  Google Scholar 

  • Torsvik VL, Goksoyer J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Toussaint V, Valois D, Dodier M, Faucher E, Dery C, Brzezinski R, Ruest L, Beaulieu C (1997) Characterisation of actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Phytoprotection 78:43–51

    Google Scholar 

  • Toyota K, Ritz K, Young IM (1996) Microbiological factors affecting the colonisation of soil aggregates by Fusarium oxysporum f. sp. raphani. Soil Biol Biochem 28:1513–1521

    Article  CAS  Google Scholar 

  • Tronsmo A, Dennis C (1978) Effect of temperature on antagonistic properties of Trichoderma species. Trans Br Mycol Soc 71:469–474

    Article  Google Scholar 

  • van Cleemput O, El-Sebay AS, Baert L (1983) Evolution of gaseous hydrocarbons from soil: effect of moisture content and nitrate level. Soil Biol Biochem 15:519–524

    Article  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  PubMed  CAS  Google Scholar 

  • Wheatley RE, Millar SE, Griffiths DW (1996) The production of volatile organic compounds during nitrogen transformations in soils. Plant Soil 181:161–163

    Article  Google Scholar 

  • Wheatley RE, Hackett C, Bruce A, Kundzewicz A (1997) Effect of substrate composition on production and inhibitory activity against wood decay fungi of volatile organic compounds from Trichoderma spp. Int Biodeterior Biodegradation 39:199–205

    Article  CAS  Google Scholar 

  • Wheatley RE, Ritz K, Crabb D, Caul S (2001) Temporal variations in potential nitrification dynamics related to differences in rates and types of carbon inputs. Soil Biol Biochem 33:2135–2144

    Article  CAS  Google Scholar 

  • Wheatley RE, Caul S, Ritz K, Daniell T, Crabb D, Griffiths BS (2003) Microbial population dynamics related to temporal variations in nitrification function in a field soil. Eur J Soil Sci 54:707–714

    Article  Google Scholar 

  • Zechman JM, Labows JN (1985) Volatiles of Pseudomonas aeuroginosa and related species by automated headspace concentration-gas chromatography. Can J Microbiol 31:232–237

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wheatley, R.E. (2008). The Role of Soil Microbial Volatile Products in Community Functional Interactions. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_13

Download citation

Publish with us

Policies and ethics