Skip to main content

Electronic Structure of GaNxAs1−x Under Pressure

  • Chapter
  • 1780 Accesses

Part of the book series: Materials Science ((SSMATERIALS,volume 105))

The electronic band structures of GaN x As1−x alloys are examined within the density functional theory. The calculations, including structural optimizations, are performed by means of full-potential linear muffin-tin-orbital and pseudopotential methods. The effects of applying external pressure and of varying the composition, x, are examined.

The host conduction states near X and L in the Brillouin zone are modified by addition of N. Their interaction with the lowest conduction bands induce a pronounced nonparabolicity of this band and affect strongly the value of the effective electron mass and its pressure and composition dependences. The origin of the additional E + optical transition is elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager III, E.E. Haller, L.U Hai, W.W. Schaff, W.K. Metzger, S.R. Kurtz, Appl. Phys. Lett. 94, 6477 (2003)

    Google Scholar 

  2. M.A. Wistley, S.R. Bank, H.B. Yuen, L.L. Goddard, J.S. Harris, J. Vac. Sci. Tech. B 22, 1562 (2004)

    Article  CAS  Google Scholar 

  3. P. Perlin, I. Gorczyca, T. Suski, P. Wisniewski, S. Lepkowski, N.E. Christensen, A. Svane, M. Hansen, S.P. DenBaars, B. Damilano, N. Grandjean, J. Massies, Phys. Rev. B 64, 115319 (2001)

    Article  ADS  CAS  Google Scholar 

  4. K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpula, O.D. Dubon, P. Becla, Phys. Rev. Lett. 91, 246403 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  5. D.J. Wolford, J.A. Bradley, K. Fry, J. Thompson, in Physics of Semiconductors, ed. by J.D. Chadi, J.D. Harrison (Springer, Berlin Heidelberg New York, 1984), p. 627

    Google Scholar 

  6. X. Liu, M.E. Pistol, L. Samuelson, S. Schwetlick, W. Seifert, Appl. Phys. Lett. 56, 1451 (1990)

    Article  ADS  CAS  Google Scholar 

  7. J. Leymarie, M. Leroux, G. Neu, Semicond. Sci. Technol. 4, 235 (1988)

    Article  ADS  Google Scholar 

  8. T. Mattila, S.H. Wei, A. Zunger, Phys. Rev. B 60, 11245 (1999)

    Article  ADS  Google Scholar 

  9. W.G. Bi, C.W. Tu, Appl. Phys. Lett. 70, 1608 (1997)

    Article  ADS  CAS  Google Scholar 

  10. U. Tisch, E. Finkman, J. Salzman, Appl. Phys. Lett. 81, 463 (2002)

    Article  ADS  CAS  Google Scholar 

  11. M. Weyers, M. Sato, Jpn. J. Appl. Phys. Part 2 31, L853 (1992)

    Google Scholar 

  12. M. Kondow, K. Uomi, K. Hosomi, T. Mozume, Jpn. J. Appl. Phys. Part 2 33, L1056 (1994)

    Google Scholar 

  13. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  CAS  Google Scholar 

  14. S.R. Perkins, A. Mascarenhas, Y. Zhang, J.F. Geisz, J.F. Friedman, J.F. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 3312 (1999)

    Article  ADS  CAS  Google Scholar 

  15. E.D. Jones, N.A. Modine, A.A. Allerman, S.R. Kurtz, A.F. Wright, S.T. Tozer, X. Wei, Phys. Rev. B 60, 4430 (1999)

    Article  ADS  CAS  Google Scholar 

  16. C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K.M. Yu, J.V. Ager III, E.E. Haller, J.F. Geisz, J.M. Olson, Appl. Phys. Lett. 76, 2409 (2000)

    Article  ADS  CAS  Google Scholar 

  17. H.M. Cheong, Y. Zhang, A. Mascarenhas, J.F. Geisz, Phys. Rev. B 61, 13687 (2000)

    Article  ADS  CAS  Google Scholar 

  18. P.J. Klar, H. Grüning, W. Heimbrodt, J. Koch, F. Höhnsdorf, W. Stolz, P.M.A. Vicente, J. Camassel, Appl. Phys. Lett. 76, 3439 (2000)

    Article  ADS  CAS  Google Scholar 

  19. W. Shan, W. Walukiewicz, K.M. Yu, J.V. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, C. Nauka, Phys. Rev. B 62, 4211 (2000)

    Article  ADS  CAS  Google Scholar 

  20. P. Perlin, S.G. Subramanya, D.E. Mars, J. Kruger, N.A. Shapiro, H. Siegle, E.R. Weber, Appl. Phys. Lett. 73: 3703 (1998)

    Article  ADS  CAS  Google Scholar 

  21. C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J.F. Geisz, K. Hingerl, W. Jantsch, D. Mars, W. Walukiewicz, Phys. Rev. B 65, 35207 (2002)

    Article  ADS  CAS  Google Scholar 

  22. M. Kondow, T. Kitatani, M.C. Larson, K. Nakahara, K. Uomi, H. Inoue J. Cryst. Growth 188, 255 (1998)

    Article  ADS  CAS  Google Scholar 

  23. I.A. Buyanova, W.M. Chen, B. Monemar, MRS Internet J. Nitride Semicond. Res. 6, 2 (2001)

    Google Scholar 

  24. J. Endicot, A. Patane, D. Maude, L. Eaves, M. Hopkinson, G. Hill, Phys. Rev. B 72, 041306(R) (2005)

    Google Scholar 

  25. A. Lindsay, E.P. O’Reilly, Solid State Commun. 112, 443 (1999)

    Article  ADS  CAS  Google Scholar 

  26. N.G. Szwacki, P. Boguslawski, Phys. Rev. B 64, 161201 (2001)

    Article  ADS  CAS  Google Scholar 

  27. A. Zunger, Phys. Stat. Sol. b 216, 117 (1999)

    Article  CAS  Google Scholar 

  28. G. Bentoumi, V. Timoschevskii, N. Madini, M. Cote, R. Leonelli, J.N. Beaudry, P. Desjardins, R.A. Masut, Phys. Rev. B 70, 35315 (2004)

    Article  ADS  CAS  Google Scholar 

  29. I. Gorczyca, C. Skierbiszewski, T. Suski, N.E. Christensen, A. Svane, Phys. Rev. B 66, 081106 (2002)

    Article  ADS  CAS  Google Scholar 

  30. N.G. Szwacki, P. Boguslawski, I. Gorczyca, N.E. Christensen, A. Svane, Acta Phys. Pol. A 102, 633 (2002)

    CAS  Google Scholar 

  31. N.E. Christensen, I. Gorczyca, A. Svane, N.G. Szwacki, P. Boguslawski, Phys. Stat. Sol. b 235, 374 (2003)

    Article  ADS  CAS  Google Scholar 

  32. I. Gorczyca, N.E. Christensen, A. Svane, Solid State Commun. 136, 439 (2005)

    Article  ADS  CAS  Google Scholar 

  33. I. Gorczyca, N.E. Christensen, A. Svane, Phys. Stat. Sol. b 234, 1599 (2006)

    Article  ADS  CAS  Google Scholar 

  34. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 681 (1989) and references therein

    Article  ADS  Google Scholar 

  35. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  CAS  Google Scholar 

  36. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  CAS  Google Scholar 

  37. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    Article  PubMed  ADS  CAS  Google Scholar 

  38. C. Wang, Q.M. Zhang, J. Bernholc, Phys. Rev. Lett. 69, 3789 (1992)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)

    Article  ADS  CAS  Google Scholar 

  40. O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  CAS  Google Scholar 

  41. M. Methfessel, Phys. Rev. B 38, 1537 (1988)

    Article  ADS  CAS  Google Scholar 

  42. M. Methfessel, C.O. Rodriguez, O.K. Andersen, Phys. Rev. B 40, 2009 (1989)

    Article  ADS  CAS  Google Scholar 

  43. M. Van Schilfgaarde, private communication

    Google Scholar 

  44. D.L. Novikov, private communication, and N.E. Christensen, D.L. Novikov, Solid State Commun. 119, 477 (2001) and references therein

    Google Scholar 

  45. D. Singh, Phys. Rev. B 43, 6388 (1991)

    Article  ADS  CAS  Google Scholar 

  46. D. Glötzel, B. Segal, O.K. Andersen, Solid State Commun. 36 403 (1980)

    Article  ADS  Google Scholar 

  47. N.E. Christensen, Phys. Rev. B 30, 5753 (1984)

    Article  ADS  CAS  Google Scholar 

  48. N.E. Christensen, in High Pressure in Semiconductor Physics I, ed. by T. Suski, W. Paul and Semiconductors and Semimetals V, vol. 54, ed. by R.K. Willardson, E.R. Weber (Academic Press, New York, 1998), p. 49

    Google Scholar 

  49. N.E. Christensen, I. Gorczyca, Phys. Rev. B 50, 4397 (1994)

    Article  ADS  CAS  Google Scholar 

  50. I. Gorczyca, A. Svane, N.E. Christensen, Phys. Rev. B 60, 8147 (1999)

    Article  ADS  CAS  Google Scholar 

  51. J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, B.P. Keller, U.K. Mishira, S.P. Den Baars, Appl. Phys. Lett. 71, 2572 (1997)

    Article  ADS  CAS  Google Scholar 

  52. L. Hedin, S. Lundqvist, Solid State Phys. 23, 1 (1969)

    Article  CAS  Google Scholar 

  53. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34,: 5390 (1986)

    Article  ADS  CAS  Google Scholar 

  54. M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 82, 1959 (1999)

    Article  ADS  CAS  Google Scholar 

  55. P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  56. R. Laskowski, N.E. Christensen, C. Ambrosch-Draxl, Phys. Rev. B 72, 035204 (2005)

    Article  ADS  CAS  Google Scholar 

  57. M. Alouani, S. Gopalan, S. Garriga, N.E. Christensen, Phys. Rev. Lett. 61, 1643 (1988)

    Article  PubMed  ADS  CAS  Google Scholar 

  58. I. Gorczyca, N.E. Christensen, M. Alouani, Phys. Rev. B 39, 7705 (1989)

    Article  ADS  CAS  Google Scholar 

  59. In fact we did try to use adjusting potentials which reproduce the value of the direct gap at Γ in GaN, but the lack of experimental data for the gaps at L and X made the adjustment at the points poorer. The results obtained for GaN x As1−x in this way differed insignificantly from the calculations with GaAs parameters throughout the supercell, the choice described in the main text

    Google Scholar 

  60. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Article  ADS  CAS  Google Scholar 

  61. K.C. Hass, H. Ehrenreich, B. Velický, Phys. Rev. B 27, 1088 (1983)

    Article  ADS  CAS  Google Scholar 

  62. J. Kudrnovský, V. Drchal, J. Mašek, Phys. Rev. B 35, 2487 (1987)

    Article  ADS  Google Scholar 

  63. J. Kudrnovský, V. Drchal, M. Šob, N.E. Christensen, O.K. Andersen, Phys. Rev. B 40, 10029 (1989)

    Article  ADS  Google Scholar 

  64. P. Bogusławski, I. Gorczyca, Semicond. Sci. Technol. 9, 2169 (1994)

    Article  ADS  Google Scholar 

  65. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, J. Appl. Phys. 86, 2349 (1999)

    Article  ADS  CAS  Google Scholar 

  66. P. Bogusławski, A. Baldereschi, Solid Stat. Commun. 66, 679 (1988); Phys. Rev. B 39, 8055 (1989)

    Google Scholar 

  67. L. Bellaiche, S.H. Wei, A. Zunger, Phys. Rev. B 54, 17568 (1996)

    Article  ADS  Google Scholar 

  68. A. Al-Yacoub, L. Bellaiche, Phys. Rev. B 62, 10847 (2000)

    Article  ADS  CAS  Google Scholar 

  69. T. Morgan, Phys. Rev. Lett. 21, 819 (1968)

    Article  ADS  CAS  Google Scholar 

  70. C. Skierbiszewski, Semicond. Sci. Technol. 17, 803 (2002)

    Article  ADS  CAS  Google Scholar 

  71. H.P. Hjalmarson, P. Vogl, D.J. Wolford, J.D. Dow, Phys. Rev. Lett. 44, 810 (1980)

    Article  ADS  CAS  Google Scholar 

  72. W. Lin-Wang, Phys. Rev. Lett. 88, 256402 (2002)

    Article  ADS  CAS  Google Scholar 

  73. M. Cardona, J. Phys. Chem. Solids 24, 1543 (1963); ibid. 26, 1351 (1965) (Erratum)

    Google Scholar 

  74. N. Shtinkov, P. Desjardins, R.A. Masut, Phys. Rev. B 67, 81202 (2003)

    Article  ADS  CAS  Google Scholar 

  75. Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, Phys. Rev. B 61, 7479 (2000)

    Article  ADS  CAS  Google Scholar 

  76. J. Hader, S. Koch, J.V. Moloney, E.P. O’Reilly, Appl. Phys. Lett. 76, 3685 (2000)

    Article  ADS  CAS  Google Scholar 

  77. E.P. O’Reilly, A. Lindsay, S. Tomic, P.J. Klar, Phys. Stat. Sol. B 241, 3099 (2004)

    Article  ADS  CAS  Google Scholar 

  78. P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 77, 1843 (2000)

    Article  ADS  CAS  Google Scholar 

  79. F. Masia, A. Polimeni, G. Baldassarri Höger von Högersthal, M. Bissiri, M. Capizzi, P.J. Klar, W. Stolz, Appl. Phys. Lett. 82, 4474 (2003)

    Article  ADS  CAS  Google Scholar 

  80. C. Skierbiszewski, J. Lusakowski, J. Phys. Condens. Matter 16, S3319 (2004)

    Article  ADS  CAS  Google Scholar 

  81. Y.J. Wang, X. Wei, Y. Zhang, A. Mascarenhas, H.P. Xin, Y.G. Hong, C.W. Tu, Appl. Phys. Lett. 82, 4453 (2003)

    Article  ADS  CAS  Google Scholar 

  82. J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Crys. Growth 221, 456 (2000)

    Article  ADS  CAS  Google Scholar 

  83. P.R.C Kent, A. Zunger, Phys. Rev. Lett. 86, 2613 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  84. P.R.C Kent, A. Zunger, Appl. Phys. Lett. 82, 559 (2003)

    Article  ADS  CAS  Google Scholar 

  85. W.G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)

    Article  ADS  CAS  Google Scholar 

  86. The experimental values for the k-dependence of the effective mass in the CB are usually obtained by a combination of Hall effect and infrared reflectivity measurements. In the analysis of the data a Fermi radius is deduced from the electron concentration obtained in the Hall measurement by application of a free-electron like relation between density and Fermi radius. Thus, it is implicitly assumed that the sample has been heavily doped, and that the doping levels are above the CB minimum, so that the electron gas is degenerate (metal, in fact). See also: ref. 87

    Google Scholar 

  87. M. Corti, A. Gabetta, M. Fanciulli, A. Svane, N.E. Christensen Phys. Rev. B 67, 064416 (2003)

    Google Scholar 

  88. R.K. Willardson, A.C. Beer (eds.), Semiconductors and Semimetals, V 8 (Academic Press, New York, 1972)

    Google Scholar 

  89. R.K. Willardson, A.C. Beer (eds.), Semiconductors and Semimetals, V 12 (Academic Press, New York, 1977)

    Google Scholar 

  90. M. Cardona, Phys. Rev. 121, 752 (1961)

    Article  ADS  Google Scholar 

  91. H. Piller, J. Phys. Soc. Jpn. Suppl. 21, 206 and [88], p. 103 (1966)

    Google Scholar 

  92. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in [89], p. 169

    Google Scholar 

  93. A. Raymond, J.L. Robert, C. Bernard, J. Phys. C 12, 2289 (1979)

    Article  ADS  CAS  Google Scholar 

  94. P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, J.C. Chervin, Appl. Phys. Lett. 68, 1114 (1996)

    Article  ADS  CAS  Google Scholar 

  95. For GaAs ε(∞) = 10.9 (see for example [96], p. 337), but it is maybe not obvious that this is relevant to the case of GaN x As1−x . However, if only rather small nitrogen concentrations are considered the screening of the electron system caused by the ions may not be significantly different from that of pure GaAs. Thus the value used in the analyses made by Skierbiszewski et al. was ε(∞) = 10.9, [97]. The argument for using the dielectric constant for the semiconductor host, although the “free carriers” created by the doping is that the electron concentrations are low, ≈1019 cm−3, compared to the density of ions

    Google Scholar 

  96. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, Berlin Heidelberg New York, 2001)

    Google Scholar 

  97. C. Skierbiszewski, private communication

    Google Scholar 

  98. E.D. Jones, N.A. Modine, A.A. Allerman, I.J. Fritz, S.R. Kurtz, A.F. Wright, S.T. Torez, X. Wei, Proc. SPIE 3621, 52 (1999)

    Article  ADS  CAS  Google Scholar 

  99. P.H. Tan, X.D. Luo, Z.Y. Xu, Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, W.K. Ge, Phys. Rev. B 73, 205205 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorczyca, I., Boguslawski, P., Svane, A., Christensen, N.E. (2008). Electronic Structure of GaNxAs1−x Under Pressure. In: Erol, A. (eds) Dilute III-V Nitride Semiconductors and Material Systems. Materials Science, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74529-7_4

Download citation

Publish with us

Policies and ethics