Skip to main content

Impact of Nitrogen Ion Density on the Optical and Structural Properties of MBE Grown GaInNAs/GaAs (100) and (111)B Quantum Wells

  • Chapter
  • 1779 Accesses

Part of the book series: Materials Science ((SSMATERIALS,volume 105))

The impact of nitrogen ion density, present in the chamber during molecular beam epitaxial growth of the GaInNAs quantum wells, on their structural and optical properties is presented. The growth on two different substrate orientations, GaAs (100) and (111)B has been studied. The quantum well optical emission was found to be strongly increased when the nitrogen ion density was reduced during the growth, as determined by photoluminescence experiments. Cathodoluminescence mappings of quantum wells grown under different ion densities are compared, showing a stronger compositional modulation depth, and thus a higher structural disorder, when a higher ion density is present during the growth. This technique was also used to study the optical activity of defects found in GaAs (111)B samples. We applied deflecting magnetic fields to tune the amount of nitrogen ion density in the chamber during growth. Atomic force microscopy (AFM) measurements in similar epilayers showed that ions cause an important structural disorder of the layers, showing approximately twice the root mean square (RMS) roughness when the density of ions is not reduced by external magnetic fields. Additionally, transmission electron microscopy (TEM) measurements of buried GaInNAs quantum wells is presented, showing that lateral compositional fluctuations of In and N are suppressed when the quantum wells are protected from the ions. Finally, we have found that quantum wells exposed to higher ion densities during the growth show deeper localization levels and higher delocalization temperatures. These results clearly show that the structural properties such as the roughness and the compositional modulation, as well as the optical properties, such as the optical emission and localization energies are strongly dependent on the density of nitrogen ions present in the chamber during the growth of GaInNAs quantum wells. Rapid thermal annealing (RTA) experiments are also consistent with this hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Li, M. Pessa, T. Ahlgren, J. Decker, Appl. Phys. Lett. 79, 1094 (2001)

    Article  ADS  CAS  Google Scholar 

  2. S.G. Spruytte, M.C. Larson, W. Wampler, C.W. Coldern, H.E. Petersen, J.S. Harris, J. Crys. Growth 227–228, 506 (2001)

    Article  Google Scholar 

  3. Z. Pan, L.H. Li, W. Zhang, Y.W. Lin, R.H. Wu, W. Ge, Appl. Phys. Lett. 77, 1280 (2000)

    Article  ADS  CAS  Google Scholar 

  4. J. Miguel-Sánchez, A. Guzmán, E. Muñoz, Appl. Phys. Lett. 85, 1940 (2004)

    Article  ADS  CAS  Google Scholar 

  5. J. Miguel-Sánchez, A. Guzmán, J.M. Ulloa, A. Hierro, E. Muñoz, J. Crys. Growth 278, 234 (2005)

    Article  ADS  CAS  Google Scholar 

  6. H. Carrère, A. Arnoult, A. Ricard, X. Marie, T.H. Amand, E. Bedel-Pereira, Sol. State Elect. 47, 419 (2003)

    Article  ADS  Google Scholar 

  7. H. Carrère, A. Arnoult, A. Ricard, E. Bedel-Pereira, J. Crys. Growth 243, 295 (2002)

    Article  ADS  Google Scholar 

  8. A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (Wiley-IEEE Press, New York 1994)

    Book  Google Scholar 

  9. M.R. Wertheimer, M. Moisan, (1994) Pure and Appl. Chem. 66, 1343

    Article  CAS  Google Scholar 

  10. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, Jpn. J. Appl. Phys. Part 1 35, 1273 (1996)

    Article  CAS  Google Scholar 

  11. I.A. Buyanova, W.M. Chen, B. Monemar, MRS Internet J. Nitride Semicond. Res. 6, 2 (2001)

    Google Scholar 

  12. T. Kitatani, K. Nakahara, M. Kondow, K. Uomi, T. Tanaka, J. Cryst. Growth 209, 345 (2000)

    Article  ADS  CAS  Google Scholar 

  13. D.L. Smith, Solid. State. Commun. 57, 919 (1986)

    Article  ADS  CAS  Google Scholar 

  14. J.L. Sánchez-Rojas (1995) Contribución a la caracterización y aplicaciones de heteroestructuras piezoeléctricas de InGaAs, Doctoral Thesis, Universidad Politécnica de Madrid

    Google Scholar 

  15. J.M. Ulloa (2005) Diseño, fabricación y caracterización de diodos láser basados en pozos cuánticos de InGaAs(N)/GaAs’, Doctoral Thesis, Universidad Politécnica de Madrid

    Google Scholar 

  16. J. Hernando (2002) Crecimiento por MBE, fabricación y caracterización de detectores de infrarrojos de pozo cuántico de InGaAs/GaAs, Doctoral Thesis, Universidad Politécnica de Madrid

    Google Scholar 

  17. J.J. Sánchez (2000) Crecimiento por MBE, fabricación y caracterización de láseres de AlGaAs/GaAs/InGaAs/GaAs (111)B para\mathop{}, Doctoral Thesis, Universidad Politécnica de Madrid

    Google Scholar 

  18. I.W. Tao, W.I. Wang, Electron. Lett. 28, 705 (1992)

    Article  ADS  CAS  Google Scholar 

  19. A. Ishihara, H. Watanabe, Jpn. J. Appl. Phys. 33, 1361 (1994)

    Article  ADS  CAS  Google Scholar 

  20. T. Takeuchi, K. Muraki, Y. Hanamaki, S. Fukatsu, N. Yamada, N. Ogasawara, N. Mikoshiba, Y. Shiraki, J. Cryst. Growth 150, 1338 (1995)

    Article  ADS  CAS  Google Scholar 

  21. T. Fleischmann, M. Moran, M. Hopkinson, H. Meidia, G.J. Rees, J.L. Sanchez-Rojas, I. Izpura, J. Appl. Phys. 89, 4689 (2001)

    Article  ADS  CAS  Google Scholar 

  22. K.W. Goosen, E.A. Caridi, T.Y. Chang, J.B. Stark, D.A.B Miller, R.A. Morgan, Appl. Phys. Lett. 56, 715 (1990)

    Article  ADS  Google Scholar 

  23. E.A. Khoo, A.S. Pabla, J. Woodhead, J.P.R David, R. Grey, G.J. Rees IEE Proc.-Optoelectron. 145, 62 (1999)

    Article  Google Scholar 

  24. E.A. Khoo, J. Woodhead, J.P.R David, R. Grey, G.J. Rees Electron. Lett. 35, 150 (1999)

    Article  CAS  Google Scholar 

  25. V. Ortiz, N.T. Pelekanos, Appl. Phys. Lett. 77, 788 (2000)

    Article  ADS  CAS  Google Scholar 

  26. T. Fleischmann, J.M. Ulloa, M. Moran, G.J. Rees, J. Woodhead, M. Hopkinson, Microelectron. J. 33, 547 (2002)

    Article  CAS  Google Scholar 

  27. J. Miguel-Sánchez, A. Guzmán, J.M. Ulloa, A. Hierro, M. Montes, E. Muñoz, Photon. Technol. Lett. 17, 2271 (2005)

    Article  ADS  CAS  Google Scholar 

  28. T. Anan, K. Nishi, S. Sugou, Appl. Phys. Lett. 60, 3159 (1992)

    Article  ADS  CAS  Google Scholar 

  29. H.G. Colson, D.J. Dunstan, J. Appl. Phys. 81, 2898 (1997)

    Article  ADS  CAS  Google Scholar 

  30. S.P. Edirisinghe, A.E. Staton-Bevan, R. Grey, J. Appl. Phys. 82, 4870 (1997)

    Article  ADS  CAS  Google Scholar 

  31. M. Gutiérrez, D. González, G. Aragón, R. García, M. Hopkinson, J.J. Sánchez, I. Izpura, Appl. Phys. Lett. 80, 1541 (2002)

    Article  ADS  CAS  Google Scholar 

  32. H. Yamaguchi, M.R. Fahy, B.A. Joyce, Appl. Phys. Lett. 69, 776 (1996)

    Article  ADS  CAS  Google Scholar 

  33. M. Henini, S. Sanguinetti, L. Brusaferri, E. Grilli, M. Guzzi, M.D. Upward, P. Moriarty, P.H. Beton, Microelectron. J. 28, 933 (1997)

    Article  Google Scholar 

  34. F.Y. Tsai, C.P. Lee, J. Appl. Phys. 84, 2624 (1997)

    Article  ADS  Google Scholar 

  35. S. Sanguinetti, M. Gurioli, M. Henini, Microelectron J. 33, 583 (2002)

    Article  CAS  Google Scholar 

  36. P.P. González-Borrero, D.I. Lubyshev, E. Petitprez, N. La Scala Jr, E. Marega Jr., P. Basmaji, Brazilian J. Phys. 27, 65 (1997)

    ADS  Google Scholar 

  37. W. Jiang, H. Xu, B. Xu, W. Zhou, Q. Gong, D. Ding, J. Liang, Z. Wang, J. Vac. Sci. Technol. B 19, 197 (2001)

    Article  CAS  Google Scholar 

  38. S.L. Tyan, P.A. Shields, R.J. Nicholas, F.Y. Tsai, C.P. Lee, Jpn. J. Appl. Phys. 39, 3286 (2000)

    Article  ADS  CAS  Google Scholar 

  39. F.Y. Tsai, C.P. Lee, Jpn. J. Appl. Phys. 38, 558 (1999)

    Article  ADS  CAS  Google Scholar 

  40. A.J. Ptak, K.S. Ziemer, M.R. Millecchia, C.D. Stinespring, T.H. Myers, MRS Internet J. Nitride Semicond. Res. 4S1, G3.10 (1999)

    Google Scholar 

  41. M.A. Herman, H. Sitter, (1989) Molecular Beam Epitaxy: Fundamentals and Current Status, Springer, Berlin Heidelberg New York

    Google Scholar 

  42. J. Miguel-Sanchez, A. Guzman, J.M. Ulloa, A. Hierro, E. Muñoz IEE Proc. Optoelectron. 151, 305 (2004)

    Article  CAS  Google Scholar 

  43. J.M. Reifsnider, M.M. Oye, S. Govindaraju, A.L. Holmes Jr., J. Crys. Growth 280, 7 (2005)

    Article  ADS  CAS  Google Scholar 

  44. R.J. Molnar, T.D. Moustakas, J. Appl. Phys. 76, 4587 (1994)

    Article  ADS  CAS  Google Scholar 

  45. A. Hierro, J.M. Ulloa, J.M. Chauveau, A. Trampert, M.A. Pinault, E. Tournié, A. Guzmán, J.L. Sanchez-Rojas, E. Calleja, J. Appl. Phys. 94, 2319 (2003)

    Article  ADS  CAS  Google Scholar 

  46. K. Kim, A. Zunger, Phys. Rev. Lett. 86, 2609 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  47. S. Karirinne, E.M. Pavelescu, J. Kontinnen, T. Jouhti, M. Pessa New J. Phys. 6, 192 (2004)

    Article  CAS  Google Scholar 

  48. K. Uno, M. Yamada, I. Tanaka, O. Ohtsuki, T. Takizawa, J. Crys. Growth 278, 214 (2005)

    Article  ADS  CAS  Google Scholar 

  49. M. Kondow, T. Kitatani, S. Shirakata, J. Phys. Condens. Matter 16, S3229 (2004)

    Article  ADS  CAS  Google Scholar 

  50. E. Runge, J. Menniger, U. Jahn, R. Hey, H.T. Grahn, Phys. Rev. B 52, 12207 (1995)

    Article  ADS  CAS  Google Scholar 

  51. U. Jahn, O. Brandt, A. Trampert, P. Waltereit, R. Hey, K.H. Ploog, Mat. Sci. Eng. B, 91–92, 329 (2002)

    Article  Google Scholar 

  52. Y. Park, M.J. Cich, R. Zhao, P. Specht, H. Feick, E.R. Weber Phys. B: Condens. Matter, 308–310, 98 (2001)

    Google Scholar 

  53. A. Trampert, J.M. Chauveau, K.H. Ploog, E. Tournié, A. Guzmán, J. Vac. Sci. Technol. B 22, 2195 (2004)

    Article  CAS  Google Scholar 

  54. H.F. Liu, S. Karirinne, C.S. Peng, T. Jouhti, J. Konttinen, M. Pessa, J. Cryst. Growth 263, 171 (2004)

    Article  ADS  CAS  Google Scholar 

  55. M.O. Fischer, M. Reinhardt, A. Forchel, IEEE J. Sel. Top. Quantum Electron. 7, 149 (2001)

    Article  CAS  Google Scholar 

  56. J.M. Chauveau, A. Trampert, K.H. Ploog, M.A. Pinault, E. Tournié, Appl. Phys. Lett. 82, 3451 (2003)

    Article  ADS  CAS  Google Scholar 

  57. J.M. Chauveau, A. Trampert, M.A. Pinault, E. Tournié, K. Du, K.H. Ploog, J. Crys. Growth 251, 383 (2003)

    Article  ADS  CAS  Google Scholar 

  58. M. Albrecht, V. Grillo, T. Remmele, H.P. Strunk, A.Y. Egorov, G.H. Dumitras, H. Riechert, A. Kaschner, R. Heitz, A. Hoffmann, Appl. Phys. Lett. 81, 2719 (2002)

    Article  ADS  CAS  Google Scholar 

  59. I.A. Buyanova, W.M. Chen, C.W. Tu, Semicond. Sci. Technol. 17, 815 (2002)

    Article  ADS  CAS  Google Scholar 

  60. M.A. Pinault, E. Tournié, Appl. Phys. Lett. 78, 1562 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miguel-Sánchez, J., Guzmán, Á., Hierro, A., Muñoz, E., Jahn, U., Trampert, A. (2008). Impact of Nitrogen Ion Density on the Optical and Structural Properties of MBE Grown GaInNAs/GaAs (100) and (111)B Quantum Wells. In: Erol, A. (eds) Dilute III-V Nitride Semiconductors and Material Systems. Materials Science, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74529-7_2

Download citation

Publish with us

Policies and ethics