Skip to main content

Planarity, Determinants, Permanents, and (Unique) Matchings

  • Conference paper
Book cover Computer Science – Theory and Applications (CSR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4649))

Included in the following conference series:

Abstract

We explore the restrictiveness of planarity on the complexity of computing the determinant and the permanent, and show that both problems remain as hard as in the general case, i.e. GapL and #P complete. On the other hand, both bipartite planarity and bimodal planarity bring the complexity of permanents down (but no further) to that of determinants. The permanent or the determinant modulo 2 is complete for ⊕L, and we show that parity of paths in a layered grid graph (which is bimodal planar) is also complete for this class. We also relate the complexity of grid graph reachability to that of testing existence/uniqueness of a perfect matching in a planar bipartite graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli (2004), An earlier version appeared in the Complexity Theory Column, SIGACT News 28, vol. 4, pp. 2–15 (December 1997)

    Google Scholar 

  2. Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Grid graph reachability problems. In: Proceedings of 21st IEEE Conference on Computational Complexity, pp. 299–313. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  3. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Allender, E., Mahajan, M.: The complexity of planarity testing. Information and Computation 189(1), 117–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Allender, E., Rheinhardt, K., Zhou, S.: Isolation, matching and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrington, D.: Bounded-width polynomial size branching programs recognize exactly those languages in NCo. Journal of Computer and System Sciences 38, 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barrington, D.A.M.: Grid graph reachability problems. Talk presented at Dogstuhl Seminar on Complexity of Boolean funcions, Seminar Number 02121 (2002)

    Google Scholar 

  9. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in unambiguous logspace. In: Proceedings of IEEE Conference on Computational Complexity CCC 2007 (to appear)

    Google Scholar 

  10. Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, Springer, Heidelberg (2006)

    Google Scholar 

  11. Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cook, S.A., McKenzie, P.: Problems complete for L. Journal of Algorithms 8, 385–394 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Damm, C.: DET=L(#L). Technical Report Informatik–Preprint 8, Fachbereich Informatik der Humboldt–Universität zu Berlin (1991)

    Google Scholar 

  14. Delcher, A.L., Kosaraju, S.R.: An NC algorithm for evaluating monotone planar circuits. SIAM Journal of Computing 24(2), 369–375 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. J. Algorithms 7(2), 174–184 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hansen, K.: Constant width planar computation characterizes ACC0. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 44–55. Springer, Heidelberg (2004)

    Google Scholar 

  17. Hertrampf, U., Reith, S., Vollmer, H.: A note on closure properties of logspace MOD classes. Information Processing Letters 75(3), 91–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hoang, T.M., Thierauf, T., Mahajan, M.: On the bipartite unique perfect matching problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 453–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Stearns, R.E.: The complexity of planar counting problems. SIAM Journal on Computing 27(4), 1142–1167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kulkarni, R., Mahajan, M.: Seeking a vertex of the planar matching polytope in nc. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 472–483. Springer, Heidelberg (2004)

    Google Scholar 

  21. Mahajan, M., Subramanya, P.R., Vinay, V.: The combinatorial approach yields an NC algorithm for computing Pfaffians. Discrete Applied Mathematics 143(1-3), 1–16 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, complexity. Chicago Journal of Theoretical Computer Science, 5 (December 1997), http://www.cs.uchicago.edu/publications/cjtcs

  23. Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University Press, Maryland (2001)

    MATH  Google Scholar 

  24. Reingold, O.: Undirected st-connectivity in logspace. In: Proc. 37th STOC, pp. 376–385 (2005)

    Google Scholar 

  25. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Comp. 29, 1118–1131 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Comp. Sc. & Information Mathematics, Univ. of Electro-Communications, Chofu-shi, Tokyo (1991)

    Google Scholar 

  27. Vadhan, S.: The complexity of counting in sparse, regular, and planar graphs. SIAM Journal on Computing 31(2), 398–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Valiant, L.G.: Why is boolean complexity theory difficult? In: Paterson, M.S. (ed.) Boolean Function Complexity. London Mathematical Society Lecture Notes Series, vol. 169, Cambridge University Press, Cambridge (1992)

    Google Scholar 

  30. Vazirani, V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Information and Computation 80(2), 152–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vinay, V.: Semi-unboundedness and complexity classes. PhD thesis, Indian Institute of Science, Bangalore (July 1991)

    Google Scholar 

  32. Xia, M., Zhao, W.: #3-regular bipartite planar vertex cover is #P-complete. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 356–364. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Yang, H.: An NC algorithm for the general planar monotone circuit value problem. In: Proceedings of 3rd IEEE Symposium on Parallel and Distributed Processing, pp. 196–203. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Volker Diekert Mikhail V. Volkov Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Datta, S., Kulkarni, R., Limaye, N., Mahajan, M. (2007). Planarity, Determinants, Permanents, and (Unique) Matchings. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds) Computer Science – Theory and Applications. CSR 2007. Lecture Notes in Computer Science, vol 4649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74510-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74510-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74509-9

  • Online ISBN: 978-3-540-74510-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics